Abstract:
A substrate with a built-in electronic component includes multiple resin insulating layers including first, second, third and fourth insulating layers, multiple conductor layers including a first wiring layer including a first pad, a second wiring layer including a second pad, and a third wiring layer including third and fourth pads, multiple via conductors including a first via connecting the first and second pads through the second insulating layer, a second via connecting the second and third pads through the third and fourth insulating layers, and a third via connected to the fourth pad through the fourth insulating layer, and an electronic component positioned a cavity through the second and third insulating layers such that the third via is connecting terminal of the component and fourth pad. The second and third vias have filled plating filling opening portions through the third and fourth insulating layers and through the fourth insulating layer.
Abstract:
A bump structure includes a first end, and a second end opposite the first end. The bump structure further includes a first side connected between the first end and the second end. The bump structure further includes a second side opposite the first side. The second side is connected between the first end and the second end, and the second side comprises a recess for a reflowed solder material to fill.
Abstract:
A chip-on-film device including a flexible circuit film having a wire, a passivation layer having a hole, an adhesive layer, a first pad, a second pad, an interconnection, and a bump is provided. A part of the adhesive layer is disposed in the hole. The first pad and the second pad are disposed under the passivation layer.A part of the interconnection is disposed under the passivation layer, and disposed between the first pad and the second pad. The bump is electrically connected to the first pad via the adhesive layer. The bump is welded on the wire. A part of a first part of the bump overlaps the first pad, a second part of the bump extends to an outside of the pad and at least partially overlaps the interconnection, and the third part of the bump overlaps the second pad.
Abstract:
A technique which improves the reliability in coupling between a bump electrode of a semiconductor chip and wiring of a mounting substrate, more particularly a technique which guarantees the flatness of a bump electrode even when wiring lies in a top wiring layer under the bump electrode, thereby improving the reliability in coupling between the bump electrode and the wiring formed on a glass substrate. Wiring, comprised of a power line or signal line, and a dummy pattern are formed in a top wiring layer beneath a non-overlap region of a bump electrode. The dummy pattern is located to fill the space between wirings to reduce irregularities caused by the wirings and space in the top wiring layer. A surf ace protection film formed to cover the top wiring layer is flattened by CMP.
Abstract:
A semiconductor device includes a semiconductor element on which electrode pads are laid out. A wiring substrate includes connecting pads respectively arranged in correspondence with the electrode pads. Pillar-shaped electrode terminals are respectively formed on the electrode pads of the semiconductor element. A solder joint electrically connects a distal portion of each electrode terminal and the corresponding connecting pad on the wiring substrate. Each electrode terminal includes a basal portion, which is connected to the corresponding electrode pad, and a guide, which is formed in the distal portion. The guide has a smaller cross-sectional area than the basal portion as viewed from above. The guide has a circumference and the basal portion has a circumference that is partially flush with the circumference of the guide. The guide is formed to guide solder toward the circumference of the guide.
Abstract:
To improve reliability of a semiconductor device, in a flip-chip bonding step, a solder material that is attached to a tip end surface of a projecting electrode in advance and a solder material that is applied in advance over a terminal (bonding lead) are heated and thereby integrated and electrically connected to each other. The terminal includes a wide part (a first portion) with a first width W1 and a narrow part (a second portion) with a second width W2. When the solder material is heated, the thickness of the solder material arranged over the narrow part becomes smaller than the thickness of the solder material arranged in the wide part. Then, in the flip-chip bonding step, a projecting electrode is arranged over the narrow part and bonded onto the narrow part. Thus, the amount of protrusion of the solder material can be reduced.
Abstract:
A conductive structure for a semiconductor chip and a method for forming the conductive structure are provided. The semiconductor chip comprises a plurality of first pads and second pads. The pad area is defined with a first area, a second area and a third area, wherein the first area is located between the second area and the third area. Each of the first pads and the second pads are interlaced to each other on the first area. The conductive structure comprises a plurality of conductive bumps formed on each of the first pads and the second pads respectively to electrically connect with each of the first pads and the second pads. Each of the conductive bumps has a first bump-width disposed on the first area and a second bump-width disposed on one of the second and third areas in which the first bump-width is shorter than the second bump-width.
Abstract:
A chip-on-film device including a flexible circuit film having a wire, a passivation layer having a hole, an adhesive layer, a pad, an interconnection, and a bump is provided. A part of the adhesive layer is disposed in the hole. The pad is disposed under the passivation layer, and a part of the pad is disposed under the hole. A part of the interconnection is disposed under the passivation layer, and disposed at a side of the pad, wherein the interconnection does not touch the pad. A part of the bump is disposed on the adhesive layer. The bump is electrically connected to the pad via the adhesive layer. The bump is welded on the wire. A part of a first part of the bump overlaps the pad, and a second part of the bump extends to an outside of the pad and at least partially overlaps the interconnection.
Abstract:
A chip fanning out method is disclosed. The chip fanning out method includes mounting a chip on a film, forming a plurality of outer lead bonds spatially arranged in a bump correspondence order on the film, forming a plurality of bumps spatially arranged in a bump arrangement order on the chip, and forming a plurality of wires to connect the plurality of outer lead bonds to the plurality of bumps according to the bump correspondence order, wherein the bump correspondence order is different from the bump arrangement order.
Abstract:
The present disclosure relates to an integrated chip structure having a first substrate including a plurality of transistor devices disposed within a semiconductor material. An interposer substrate includes vias extending through a silicon layer. A copper bump is disposed between the first substrate and the interposer substrate. The copper bump has a sidewall defining a recess. Solder is disposed over the copper bump and continuously extending from over the copper bump to within the recess. A conductive layer is disposed between the first substrate and the interposer substrate and is separated from the copper bump by the solder.