Abstract:
In one embodiment, an aperture set for a multi-beam includes a shaping aperture array in which a plurality of first openings are formed, a region including the plurality of first openings is irradiated with a charged particle beam discharged from a discharge unit, and portions of the charged particle beam pass through the plurality of respective first openings to form a multi-beam, a first shield plate in which a plurality of second openings is formed, through which a corresponding beam in the multi-beam, which passes through the plurality of first openings, passes, and a blanking aperture array in which a plurality of third openings is formed, through which a corresponding beam in the multi-beam, which passes through the plurality of first openings and the plurality of second openings, passes. The second openings are wider than the first openings.
Abstract:
There is provided an electron microscope capable of recording images in a shorter time. The electron microscope (100) includes: an illumination system (4) for illuminating a sample (S) with an electron beam; an imaging system (6) for focusing electrons transmitted through the sample (S); an electron deflector (24) for deflecting the electrons transmitted through the sample (S); an imager (28) having a photosensitive surface (29) for detecting the electrons transmitted through the sample (S), the imager (28) being operative to record focused images formed by the electrons transmitted through the sample (S); and a controller (30) for controlling the electron deflector (24) such that an active electron incident region (2) of the photosensitive surface (29) currently hit by the beam is varied in response to variations in illumination conditions of the illumination system (4).
Abstract:
A multi-beam optical system adjustment method includes forming multi-beams by making a region including the whole of a plurality of openings in a shaping aperture array substrate irradiated by a charged particle beam, and making portions of the charged particle beam individually pass through a corresponding one of the plurality of openings, measuring a distortion of the multi-beams while variably changing the crossover height position of the multi-beams, measuring the crossover height position of the multi-beams where the distortion of the multi-beams is smaller than the others, and adjusting the height position of a limiting aperture substrate which limits passage of a beam deviated from the trajectory in the multi-beams to the crossover height position.
Abstract:
A sub-beam aperture array for forming a plurality of sub-beams from one or more charged particle beams. The sub-beam aperture array comprises one or more beam areas, each beam area comprising a plurality of sub-beam apertures arranged in a non-regular hexagonal pattern, the sub-beam apertures arranged so that, when projected in a first direction onto a line parallel to a second direction, the sub-beam apertures are uniformly spaced along the line, and wherein the first direction is different from the second direction. The system further comprises a beamlet aperture array with a plurality of beamlet apertures arranged in one or more groups. The beamlet aperture array is arranged to receive the sub-beams and form a plurality of beamlets at the locations of the beamlet apertures of the beamlet array.
Abstract:
A method for inspecting a specimen with an array of primary charged particle beamlets in a charged particle beam device having an optical axis. The method includes generating a primary charged particle beam; illuminating a multi-aperture lens plate with the primary charged particle beam to generate the array of primary charged particle beamlets; and correcting a field curvature of the charged particle beam device with a first and a second field curvature correction electrode. The method further includes applying a voltage to the first and to the second field curvature correction electrode. At least one of the field strength provided by the first and the second field curvature correction electrode varies in a plane perpendicular to the optical axis of the charged particle beam device. The method further includes focusing the primary charged particle beamlets on separate locations on the specimen with an objective lens.
Abstract:
In one embodiment, a multi charged particle beam writing apparatus includes an emitter that emits a charged particle beam, an aperture plate in which a plurality of openings are formed and that forms multiple beams by allowing the charged particle beam to pass through the plurality of openings, a blanking plate provided with a plurality of blankers that each perform blanking deflection on a corresponding beam included in the multiple beams, a stage on which a substrate irradiated with the multiple beams, a detector that detects a reflection charged particle from the substrate, feature amount calculation circuitry that calculates a feature amount of an aperture image based on a detection value of the detector, and aberration correction circuitry that corrects aberration of the charged particle beam based on the feature amount.
Abstract:
A device for detecting X-rays radiated out of a substrate surface, said device comprising at least one X-ray detector, a resolver grating and a modulator grating, said resolver grating with at least one opening facing towards said X-ray detector is arranged in front of said X-ray detector. Said modulator grating is provided between said resolver grating and said substrate at a predetermined distance from said resolver grating and said substrate, where said modulator grating having a plurality of openings in at least a first direction, wherein said x-rays from said surface is spatially modulated with said modulator grating and resolver grating.
Abstract:
A housing device for providing a magnetic shielding of a charged particle beam is described. The housing device includes a housing element configured to at least partially enclose a charged particle beam propagation path and comprising a magnetic shielding material, wherein the housing element includes an inner surface directed toward the charged particle beam propagation path, an outer surface directed away from the charged particle beam propagation path and at least one edge region with an edge surface connecting the inner surface with the outer surface; and a contacting element comprising a conductive material and fixed to the at least one edge region in at least one of a form-fit connection and a bonded connection. Further, a housing arrangement including two or more electrically contacting housing devices, a charged particle beam device with a housing device, and methods of manufacturing a housing device are described.
Abstract:
This invention provides a charged particle source, which comprises an emitter and means fo generating a magnetic field distribution. The magnetic field distribution is minimum, about zero, or preferred zero at the tip of the emitter, and along the optical axis is maximum away from the tip immediately. In a preferred embodiment, the magnetic field distribution is provided by dual magnetic lens which provides an anti-symmetric magnetic field at the tip, such that magnetic field at the tip is zero.
Abstract:
A charged particle beam writing apparatus includes a limiting aperture member at the downstream side of the emission source, arranged such that its height position can be selectively adjusted, according to condition, to be one of the n-th height position (n being an integer of 1 or more) based on the n-th condition depending on at least one of the height position of the emission source and an emission current value, and the (n+m)th height position (m being an integer of 1 or more) based on the (n+m)th condition depending on at least one of the height position of the emission source and the emission current value, and a shaping aperture member at the downstream side of the electron lens and the limiting aperture member to shape the charged particle beam by letting a part of the charged particle beam pass through a second opening.