摘要:
Disclosed is a complementary field effect transistor (CFET) formed from stacked 2D-material transistors. The 2D-material transistors are formed from transition metal dichalcogenide (TMD), which are atomically thin semiconductors. The stacked TMD transistors allow for enhanced drive current and lower switching capacitance, both of which are desirable.
摘要:
A semiconductor device includes a transistor structure that includes a two-dimensional (2D) material around at least a dielectric structure. The transistor structure includes a first source/drain structure in contact with the first 2D material. The transistor structure includes a second source/drain structure in contact with the 2D material. The transistor structure includes a gate structure around at least the 2D material.
摘要:
FinFET devices including III-V fin structures and silicon-based source/drain regions are formed on a semiconductor substrate. Silicon is diffused into the III-V fin structures to form n-type junctions. Leakage through the substrate is addressed by forming p-n junctions adjoining the source/drain regions and isolating the III-V fin structures under the channel regions.
摘要:
A complementary thin film transistor and manufacturing method thereof are provided. The complementary thin film transistor has a substrate, an n-type semiconductor layer, a p-type semiconductor layer, a first passivation layer, a first electrode metal layer, and a second electrode metal layer. The n-type semiconductor layer is disposed above the substrate, and comprises a metal oxide material. The p-type semiconductor layer is disposed above the substrate, and comprises an organic semiconductor material. The first passivation layer is disposed between the n-type semiconductor layer and the p-type semiconductor layer, and formed with at least one contacting hole. The first electrode metal layer and the second electrode metal layer are electrically connected with each other through the contacting hole.
摘要:
FinFET devices including III-V fin structures and silicon-based source/drain regions are formed on a semiconductor substrate. Silicon is diffused into the III-V fin structures to form n-type junctions. Leakage through the substrate is addressed by forming p-n junctions adjoining the source/drain regions and isolating the III-V fin structures under the channel regions.
摘要:
FinFET devices including III-V fin structures and silicon-based source/drain regions are formed on a semiconductor substrate. Silicon is diffused into the III-V fin structures to form n-type junctions. Leakage through the substrate is addressed by forming p-n junctions adjoining the source/drain regions and isolating the III-V fin structures under the channel regions.
摘要:
Embodiments of semiconductor assemblies, and related integrated circuit devices and techniques, are disclosed herein. In some embodiments, a semiconductor assembly may include a flexible substrate, a first barrier formed of a first transition metal dichalcogenide (TMD) material, a transistor channel formed of a second TMD material, and a second barrier formed of a third TMD material. The first barrier may be disposed between the transistor channel and the flexible substrate, the transistor channel may be disposed between the second barrier and the first barrier, and a bandgap of the transistor channel may be less than a bandgap of the first barrier and less than a bandgap of the second barrier. Other embodiments may be disclosed and/or claimed.
摘要:
An integrated circuit device includes a substrate including a first region and a second region, a first transistor in the first region, the first transistor being an N-type transistor and including a first silicon-germanium layer on the substrate, and a first gate electrode on the first silicon-germanium layer, and a second transistor in the second region and including a second gate electrode, the second transistor not having a silicon-germanium layer between the substrate and the second gate electrode.
摘要:
Devices, and methods of forming such devices, having a material that is semimetal when in bulk but is a semiconductor in the devices are described. An example structure includes a substrate, a first source/drain contact region, a channel structure, a gate dielectric, a gate electrode, and a second source/drain contact region. The substrate has an upper surface. The channel structure is connected to and over the first source/drain contact region, and the channel structure is over the upper surface of the substrate. The channel structure has a sidewall that extends above the first source/drain contact region. The channel structure comprises a bismuth-containing semiconductor material. The gate dielectric is along the sidewall of the channel structure. The gate electrode is along the gate dielectric. The second source/drain contact region is connected to and over the channel structure.
摘要:
Provided is a two-dimensional large-area growth method for a chalcogen compound, the method including: depositing a film of a transition metal element or a Group V element on a substrate; thereafter, uniformly diffusing a vaporized chalcogen element, a vaporized chalcogen precursor compound or a chalcogen compound represented by M′X′2+δ within the film; and, thereafter, forming a film of a chalcogen compound represented by MX2 by forming the chalcogen compound represented by MX2 through post-heating.