摘要:
The present disclosure relates to a laminate and a method for preparing the same. The laminate comprises a substrate, a coating layer, and a water-repellent layer sequentially laminated, the coating layer comprises a first coating layer and a second coating layer laminated one or more times alternately, the first coating layer comprises at least one metal oxide selected from a group consisting of a lanthanide metal oxide, a transition metal oxide, and a composite metal oxide comprising lanthanum metal and transition metal, the second coating layer comprises an alkaline earth metal fluoride and a transition metal oxide.
摘要:
Embodiments described herein include a method for depositing a material layer on a substrate while controlling a bow of the substrate and a surface roughness of the material layer. A bias applied to the substrate while the material layer is deposited is adjusted to control the bow of the substrate. A bombardment process is performed on the material layer to improve the surface roughness of the material layer. The bias and bombardment process improve a uniformity of the material layer and reduce an occurrence of the material layer cracking due to the bow of the substrate.
摘要:
One embodiment described herein is directed to a method involving depositing a seed layer on a substrate, the seed layer comprising A1 phase FePt with a ratio of Pt of Fe greater than 1:1. A main layer is deposited on the seed layer, the main layer comprising A1 phase FePt with a ratio of Pt to Fe of approximately 1:1. A cap layer is deposited on the main layer, the cap layer comprising A1 phase FePt with a ratio of Pt to Fe of less than 1:1. The seed, main and cap layers are annealed to convert the A1 phase FePt to L10 phase FePt having a graded FePt structure of varying stoichimetry from approximately Fe50Pt50 adjacent a lower portion of the structure proximate the substrate to Fe>50Pt
摘要:
A method for TEM sample preparation and analysis that can be used in a FIB-SEM system without re-welds, unloads, user handling of the lamella, or a motorized flip stage. The method allows a dual beam FIB-SEM system with a typical tilt stage to be used to extract a sample to from a substrate, mount the sample onto a TEM sample holder capable of tilting, thin the sample using FIB milling, and rotate the sample so that the sample face is perpendicular to an electron column for STEM imaging.
摘要:
One embodiment described herein is directed to a method involving depositing a seed layer on a substrate, the seed layer comprising A1 phase FePt with a ratio of Pt of Fe greater than 1:1. A main layer is deposited on the seed layer, the main layer comprising A1 phase FePt with a ratio of Pt to Fe of approximately 1:1. A cap layer is deposited on the main layer, the cap layer comprising A1 phase FePt with a ratio of Pt to Fe of less than 1:1. The seed, main and cap layers are annealed to convert the A1 phase FePt to L10 phase FePt having a graded FePt structure of varying stoichimetry from approximately Fe50Pt50 adjacent a lower portion of the structure proximate the substrate to Fe>50Pt
摘要:
An object of the present invention is to provide a method which enable a material to be fully embedded into a recess portion with a deposition film left in the recess portion. A method in one embodiment comprises: a first irradiation step of irradiating a deposition film formed on an opening portion of a recess portion in a substrate with a particle beam in a direction at a first angle with respect to a substrate in-plane direction, to remove part of the deposition film in a thickness direction; and a second irradiation step of, after the first irradiation step, irradiating the deposition film with the particle beam in a direction at a second angle which is closer to perpendicular to the substrate in-plane direction than the first angle is, to remove part of the remaining deposition film in the thickness direction.
摘要:
The method for depositing a film of the present invention comprises the first film deposition step of depositing a first film 103 having hardness higher than hardness of a substrate 101 on a surface of the substrate 101, the first irradiation step of irradiating particles having energy on the first film 103, and the second film deposition step of depositing an oil-repellent film 105 on a surface of the first film 103 subjected to the first irradiation step. According to the present invention, a method for depositing a film enabling production of an oil-repellent substrate comprising an oil-repellent film having abrasion resistance of a practically sufficient level can be provided.
摘要:
In some embodiments, apparatus are provided that provide for flexible processing in both high productivity combinatorial (HPC) and full wafer modes. The apparatus allow for interchangeable functionality that includes deposition with different sizes of targets, plasma treatment, ion beam treatment, and in-situ metrology. The functional modules are designed so that the modules may be interchanged with minimal effort and reduced system downtime.
摘要:
In some embodiments, apparatus are provided that provide for flexible processing in both high productivity combinatorial (HPC) and full wafer modes. The apparatus allow for interchangeable functionality that includes deposition with different sizes of targets, plasma treatment, ion beam treatment, and in-situ metrology. The functional modules are designed so that the modules may be interchanged with minimal effort and reduced system downtime.
摘要:
Embodiments of the present disclosure provide for a structure, methods of making the structure, methods of using the structure, and the like. In particular, the structure includes a porous germanium layer, where the porous germanium layer includes a porous network that improves the performance of the structure.