Abstract:
Embodiments of the present disclosure generally relate to a multilayer stack used as a mask in extreme ultraviolet (EUV) lithography and methods for forming a multilayer stack. In one embodiment, the method includes forming a carbon layer over a film stack, forming a metal rich oxide layer on the carbon layer by a physical vapor deposition (PVD) process, forming a metal oxide photoresist layer on the metal rich oxide layer, and patterning the metal oxide photoresist layer. The metal oxide photoresist layer is different from the metal rich oxide layer and is formed by a process different from the PVD process. The metal rich oxide layer formed by the PVD process improves adhesion of the metal oxide photoresist layer and increases the secondary electrons during EUV lithography, which leads to decreased EUV dose energies.
Abstract:
Methods for forming a film stack comprising a hardmask layer and etching such hardmask layer to form features in the film stack are provided. The methods described herein facilitate profile and dimension control of features through a proper profile management scheme formed in the film stack. In one or more embodiments, a method for etching a hardmask layer includes forming a hardmask layer on a substrate, where the hardmask layer contains a metal-containing material containing a metal element having an atomic number greater than 28, supplying an etching gas mixture to the substrate, and etching the hardmask layer exposed by a photoresist layer.
Abstract:
A method for forming an anti-reflective coating (ARC) includes positioning a substrate below a target and flowing a first gas to deposit a first portion of the graded ARC onto the substrate. The method includes gradually flowing a second gas to deposit a second portion of the graded ARC, and gradually flowing a third gas while simultaneously gradually decreasing the flow of the second gas to deposit a third portion of the graded ARC. The method also includes flowing the third gas after stopping the flow of the second gas to form a fourth portion of the graded ARC. In another embodiment a film stack having a substrate having a graded ARC disposed thereon is provided. The graded ARC includes a first portion, a second portion disposed on the first portion, a third portion disposed on the second portion, and a fourth portion disposed on the third portion.
Abstract:
Embodiments of the disclosure generally provide a method of forming a reduced dimension pattern in a hardmask that is optically matched to an overlying photoresist layer. The method generally comprises of application of a dimension shrinking conformal carbon layer over the field region, sidewalls, and bottom portion of the patterned photoresist and the underlying hardmask at temperatures below the decomposition temperature of the photoresist. The methods and embodiments herein further involve removal of the conformal carbon layer from the bottom portion of the patterned photoresist and the hardmask by an etch process to expose the hardmask, etching the exposed hardmask substrate at the bottom portion, followed by the simultaneous removal of the conformal carbon layer, the photoresist, and other carbonaceous components. A hardmask with reduced dimension features for further pattern transfer is thus yielded.
Abstract:
The embodiments herein provides methods for forming a PVD silicon oxide or silicon rich oxide, or PVD SiN or silicon rich SiN, or SiC or silicon rich SiC, or combination of the preceding including a variation which includes controlled doping of hydrogen into the compounds heretofore referred to as SiOxNyCz:Hw, where w, x, y, and z can vary in concentration from 0% to 100%, is produced as a hardmask with optical properties that are substantially matched to the photo-resists at the exposure wavelength. Thus making the hardmask optically planarized with respect to the photo-resist. This allows for multiple sequences of litho and etches in the hardmask while the photo-resist maintains essentially no optical topography or reflectivity variations.
Abstract translation:本文的实施方案提供了用于形成PVD氧化硅或富硅氧化物或PVD SiN或富硅SiN或富SiC或富硅SiC的方法或前述组合,包括将氢控制掺入到迄今为止参考的化合物 作为SiO x N y C z:H w,其中w,x,y和z可以在0%至100%的浓度范围内变化,作为具有与曝光波长下的光致抗蚀剂基本匹配的光学性质的硬掩模。 因此使相对于光致抗蚀剂光学平坦化的硬掩模。 这允许在硬掩模中的多个序列的光刻和蚀刻,而光致抗蚀剂基本上保持没有光学形貌或反射率变化。
Abstract:
Embodiments described herein include a method for depositing a material layer on a substrate while controlling a bow of the substrate and a surface roughness of the material layer. A bias applied to the substrate while the material layer is deposited is adjusted to control the bow of the substrate. A bombardment process is performed on the material layer to improve the surface roughness of the material layer. The bias and bombardment process improve a uniformity of the material layer and reduce an occurrence of the material layer cracking due to the bow of the substrate.
Abstract:
A physical vapor deposition system includes a chamber, three target supports to targets, a movable shield positioned having an opening therethrough, a workpiece support to hold a workpiece in the chamber, a gas supply to deliver nitrogen gas and an inert gas to the chamber, a power source, and a controller. The controller is configured to move the shield to position the opening adjacent each target in turn, and at each target cause the power source to apply power sufficient to ignite a plasma in the chamber to cause deposition of a buffer layer, a device layer of a first material that is a metal nitride suitable for use as a superconductor at temperatures above 8° K on the buffer layer, and a capping layer, respectively.
Abstract:
Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
Abstract:
A physical vapor deposition system includes a chamber, three target supports to targets, a movable shield positioned having an opening therethrough, a workpiece support to hold a workpiece in the chamber, a gas supply to deliver nitrogen gas and an inert gas to the chamber, a power source, and a controller. The controller is configured to move the shield to position the opening adjacent each target in turn, and at each target cause the power source to apply power sufficient to ignite a plasma in the chamber to cause deposition of a buffer layer, a device layer of a first material that is a metal nitride suitable for use as a superconductor at temperatures above 8° K on the buffer layer, and a capping layer, respectively.
Abstract:
Embodiments of the invention described herein generally relate to an apparatus and methods for forming high quality buffer layers and Group III-V layers that are used to form a useful semiconductor device, such as a power device, light emitting diode (LED), laser diode (LD) or other useful device. Embodiments of the invention may also include an apparatus and methods for forming high quality buffer layers, Group III-V layers and electrode layers that are used to form a useful semiconductor device. In some embodiments, an apparatus and method includes the use of one or more cluster tools having one or more physical vapor deposition (PVD) chambers that are adapted to deposit a high quality aluminum nitride (AlN) buffer layer that has a high crystalline orientation on a surface of a plurality of substrates at the same time.