Abstract:
Embodiments disclosed herein include methods of forming high quality silicon nitride films. In an embodiment, a method of depositing a film on a substrate may comprise forming a silicon nitride film over a surface of the substrate in a first processing volume with a deposition process, and treating the silicon nitride film in a second processing volume, wherein treating the silicon nitride film comprises exposing the film to a plasma induced by a modular high-frequency plasma source. In an embodiment, a sheath potential of the plasma is less than 100 V, and a power density of the high-frequency plasma source is approximately 5 W/cm2 or greater, approximately 10 W/cm2 or greater, or approximately 20 W/cm2 or greater.
Abstract:
A method of processing a substrate is provided including flowing a deposition gas comprising a hydrocarbon compound and a dopant compound into a process volume having a substrate disposed positioned on a substrate support. The process volume is maintained at a pressure of about 0.5 mTorr to about 10 mTorr. The method includes generating a plasma at the substrate by applying a first RF bias to the substrate support to deposit a doped diamond-like carbon film on the substrate. The doped diamond-like carbon film includes about 5 at. % to about 25 at. % of dopant and a first stress property. The method includes annealing the doped diamond-like carbon film at about 220° C. to about 450° C. to form an annealed film. The annealed film includes a second stress property. The second stress property having an absolute value less than or within 10% the first stress property.
Abstract:
Embodiments of the present disclosure generally relate to techniques for deposition of high-density films for patterning applications. In one embodiment, a method of processing a substrate is provided. The method includes depositing a carbon hardmask over a film stack formed on a substrate, wherein the substrate is positioned on an electrostatic chuck disposed in a process chamber, implanting ions into the carbon hardmask, wherein depositing the carbon hardmask and implanting ions into the carbon hardmask are performed in the same process chamber, and repeating depositing the carbon hardmask and implanting ions into the carbon hardmask in a cyclic fashion until a pre-determined thickness of the carbon hardmask is reached.
Abstract:
Embodiments of the present disclosure generally relate to techniques for deposition of high-density films for patterning applications. In one embodiment, a method of processing a substrate is provided. The method includes depositing a carbon hardmask over a film stack formed on a substrate, wherein the substrate is positioned on an electrostatic chuck disposed in a process chamber, implanting ions into the carbon hardmask, wherein depositing the carbon hardmask and implanting ions into the carbon hardmask are performed in the same process chamber, and repeating depositing the carbon hardmask and implanting ions into the carbon hardmask in a cyclic fashion until a pre-determined thickness of the carbon hardmask is reached.
Abstract:
Embodiments of the present disclosure generally relate to a multilayer stack used as a mask in extreme ultraviolet (EUV) lithography and methods for forming a multilayer stack. In one embodiment, the method includes forming a carbon layer over a film stack, forming a metal rich oxide layer on the carbon layer by a physical vapor deposition (PVD) process, forming a metal oxide photoresist layer on the metal rich oxide layer, and patterning the metal oxide photoresist layer. The metal oxide photoresist layer is different from the metal rich oxide layer and is formed by a process different from the PVD process. The metal rich oxide layer formed by the PVD process improves adhesion of the metal oxide photoresist layer and increases the secondary electrons during EUV lithography, which leads to decreased EUV dose energies.
Abstract:
Embodiments of the present disclosure generally relate to a substrate processing chamber, and components thereof, for forming semiconductor devices. The processing chamber comprises a substrate support, and an edge ring is disposed around the substrate support. The edge ring comprises a material selected from the group consisting of quartz, silicon, cross-linked polystyrene and divinylbenzene, polyether ether ketone, Al2O3, and AlN. The material of the edge ring is selected to modulate the properties of hardmask films deposited on substrates in the processing chamber. As such, hardmask films having desired film properties can be deposited in the processing chamber without scaling up the RF power to the chamber.
Abstract:
Methods forming a low-κ dielectric material on a substrate are described. The methods may include the steps of producing a radical precursor by flowing an unexcited precursor into a remote plasma region, and reacting the radical precursor with a gas-phase silicon precursor to deposit a flowable film on the substrate. The gas-phase silicon precursor may include at least one silicon-and-oxygen containing compound and at least one silicon-and-carbon linker. The flowable film may be cured to form the low-κ dielectric material.
Abstract:
Embodiments of the present disclosure generally relate to processes for forming silicon- and boron-containing films for use in, e.g., spacer-defined patterning applications. In an embodiment, a spacer-defined patterning process is provided. The process includes disposing a substrate in a processing volume of a processing chamber, the substrate having patterned features formed thereon, and flowing a first process gas into the processing volume, the first process gas comprising a silicon-containing species, the silicon-containing species having a higher molecular weight than SiH4. The process further includes flowing a second process gas into the processing volume, the second process gas comprising a boron-containing species, and depositing, under deposition conditions, a conformal film on the patterned features, the conformal film comprising silicon and boron.
Abstract:
Embodiments of the present disclosure generally relate to fabricating electronic devices, such as memory devices. In one or more embodiments, a method for forming a device includes forming a film stack on a substrate, where the film stack contains a plurality of alternating layers of oxide layers and nitride layers and has a stack thickness, and etching the film stack to a first depth to form a plurality of openings between a plurality of structures. The method includes depositing an etch protection liner containing amorphous-silicon on the sidewalls and the bottoms of the structures, removing the etch protection liner from at least the bottoms of the openings, forming a plurality of holes by etching the film stack in the openings to further extend each bottom of the openings to a second depth of the hole, and removing the etch protection liner from the sidewalls.
Abstract:
Embodiments described herein provide magnetic and electromagnetic housing systems and a method for controlling the properties of plasma generated in a process volume of a process chamber to affect deposition properties of a film. In one embodiment, the method includes rotation of the rotational magnetic housing about a center axis of the process volume to create dynamic magnetic fields. The magnetic fields modify the shape of the plasma, concentration of ions and radicals, and movement of concentration of ions and radicals to control the density profile of the plasma. Controlling the density profile of the plasma tunes the uniformity and properties of a deposited or etched film.