Abstract:
Implementations described herein generally relate to a method and apparatus for depositing material on a substrate. In one implementation, a processing chamber for processing a substrate includes a chamber body and a substrate support disposed within the chamber body and adapted to support the substrate thereon. The processing chamber includes a plurality of gas inlets positioned above the substrate support to direct a process gas above the substrate support. A movable diffuser is pivotally mounted adjacent the substrate support via a pivoting mount. The movable diffuser includes a deposition head having a plurality of inlet openings for directing process gas toward the substrate support and a plurality of exhaust openings for providing an exhaust to process gas disposed above the substrate support by the movable diffuser.
Abstract:
A process chamber is provided including a sidewall, a substrate support having an outer ledge, and a gas inlet beneath the substrate support. The process chamber further includes a first liner disposed around a bottom surface of the outer ledge of the substrate support. The first liner has an inner surface separated from the outer ledge of the substrate support by a first gap. The process chamber further includes a flow isolator ring having an inner bottom surface disposed on the outer ledge of the substrate support and an outer bottom surface extending outwardly relative to the inner bottom surface, the outer bottom surface overlying the first gap.
Abstract:
A processing chamber for processing a substrate is disclosed herein. In one embodiment, the processing chamber includes a liner assembly disposed within an interior volume of the processing chamber, and a C-channel disposed in an interior volume of the chamber, circumscribing the liner assembly. In another embodiment, a process kit disposed in the interior volume of the processing chamber is disclosed herein. The process kit includes a liner assembly, a C-channel, and an isolator disposed in the interior volume. The C-channel and the isolator circumscribe the liner assembly. A method for depositing a silicon based material on a substrate by flowing a precursor gas into a processing chamber is also described herein.
Abstract:
Processing chambers having a lid with a lower surface, a substrate support with an upper surface facing the lid and an inner baffle ring between the substrate support and the lid are described. Methods of using the processing chamber are described.
Abstract:
Substrate processing systems are described that have a capacitively coupled plasma (CCP) unit positioned inside a process chamber. The CCP unit may include a plasma excitation region formed between a first electrode and a second electrode. The first electrode may include a first plurality of openings to permit a first gas to enter the plasma excitation region, and the second electrode may include a second plurality of openings to permit an activated gas to exit the plasma excitation region. The system may further include a gas inlet for supplying the first gas to the first electrode of the CCP unit, and a pedestal that is operable to support a substrate. The pedestal is positioned below a gas reaction region into which the activated gas travels from the CCP unit.
Abstract:
Embodiments of the present disclosure generally relate to a substrate processing chamber, and components thereof, for forming semiconductor devices. The processing chamber comprises a substrate support, and an edge ring is disposed around the substrate support. The edge ring comprises a material selected from the group consisting of quartz, silicon, cross-linked polystyrene and divinylbenzene, polyether ether ketone, Al2O3, and AlN. The material of the edge ring is selected to modulate the properties of hardmask films deposited on substrates in the processing chamber. As such, hardmask films having desired film properties can be deposited in the processing chamber without scaling up the RF power to the chamber.
Abstract:
Apparatus and methods for gas distribution assemblies are provided. In one aspect, a gas distribution assembly is provided comprising an annular body comprising an annular ring having an inner annular wall, an outer wall, an upper surface, and a bottom surface, an upper recess formed into the upper surface, and a seat formed into the inner annular wall, an upper plate positioned in the upper recess, comprising a disk-shaped body having a plurality of first apertures formed therethrough, and a bottom plate positioned on the seat, comprising a disk-shaped body having a plurality of second apertures formed therethrough which align with the first apertures, and a plurality of third apertures formed between the second apertures and through the bottom plate, the bottom plate sealingly coupled to the upper plate to fluidly isolate the plurality of first and second apertures from the plurality of third apertures.
Abstract:
Apparatus and methods for gas distribution assemblies are provided. In one aspect, a gas distribution assembly is provided comprising an annular body comprising an annular ring having an inner annular wall, an outer wall, an upper surface, and a bottom surface, an upper recess formed into the upper surface, and a seat formed into the inner annular wall, an upper plate positioned in the upper recess, comprising a disk-shaped body having a plurality of first apertures formed therethrough, and a bottom plate positioned on the seat, comprising a disk-shaped body having a plurality of second apertures formed therethrough which align with the first apertures, and a plurality of third apertures formed between the second apertures and through the bottom plate, the bottom plate sealingly coupled to the upper plate to fluidly isolate the plurality of first and second apertures from the plurality of third apertures.
Abstract:
A processing chamber for processing a substrate is disclosed herein. In one embodiment, the processing chamber includes a liner assembly disposed within an interior volume of the processing chamber, and a C-channel disposed in an interior volume of the chamber, circumscribing the liner assembly. In another embodiment, a process kit disposed in the interior volume of the processing chamber is disclosed herein. The process kit includes a liner assembly, a C-channel, and an isolator disposed in the interior volume. The C-channel and the isolator circumscribe the liner assembly. A method for depositing a silicon based material on a substrate by flowing a precursor gas into a processing chamber is also described herein.