Abstract:
The present invention provides a structure. In an exemplary embodiment, the structure includes a base material, at least one metal pad, where a first surface of the metal pad is in contact with the base material, and a metal pedestal, where the metal pedestal is in contact with the metal pad, where a radial alignment of the metal pad is shifted by an offset distance, with respect to the metal pedestal, such that the metal pad is shifted towards a center axis of the base material, where a first dimension of the metal pad is smaller than a second dimension of the metal pad, where the second dimension is orthogonal to a line running from a center of the metal pad to the center axis of the base material, where the first dimension is parallel to the line.
Abstract:
The present invention provides a structure. In an exemplary embodiment, the structure includes a base material, at least one metal pad, where a first surface of the metal pad is in contact with the base material, and a metal pedestal, where the metal pedestal is in contact with the metal pad, where a radial alignment of the metal pad is shifted by an offset distance, with respect to the metal pedestal, such that the metal pad is shifted towards a center axis of the base material, where a first dimension of the metal pad is smaller than a second dimension of the metal pad, where the second dimension is orthogonal to a line running from a center of the metal pad to the center axis of the base material, where the first dimension is parallel to the line.
Abstract:
A solder bump support structure and method of manufacturing thereof is provided. The solder bump support structure includes an inter-level dielectric (ILD) layer formed over a silicon substrate. The ILD layer has a plurality of conductive vias. The structure further includes a first insulation layer formed on the ILD layer. The solder bump support structure further includes a pedestal member formed on the ILD layer which includes a conductive material formed above the plurality of conductive vias in the ILD layer coaxially surrounded by a second insulation layer. The second insulation layer is thicker than the first insulation layer. The structure further includes a capping under bump metal (UBM) layer formed over, and in electrical contact with, the conductive material and formed over at least a portion of the second insulation layer of the pedestal member.
Abstract:
A method including forming a stack of layers on top of a dielectric layer and within an opening in the dielectric layer, the stack of layers comprising a first layer, a second layer, a third layer, and a fourth layer, each formed successively one on top of another, removing a first portion of the fourth layer outside the opening to expose a portion of the third layer, a second portion of the fourth layer remains within the opening, filling the opening with a metal by applying an electrical potential to the second layer during an electroplating technique in which the metal plates out on the fourth layer but does not plate out on the third layer, and removing portions of the first layer, the second layer, and the third layer to expose an upper surface of the dielectric layer between the opening and an adjacent opening.
Abstract:
The present invention provides a structure. In an exemplary embodiment, the structure includes a base material, at least one metal pad, where a first surface of the metal pad is in contact with the base material, and a metal pedestal, where the metal pedestal is in contact with the metal pad, where a radial alignment of the metal pad is shifted by an offset distance, with respect to the metal pedestal, such that the metal pad is shifted towards a center axis of the base material, where a first dimension of the metal pad is smaller than a second dimension of the metal pad, where the second dimension is orthogonal to a line running from a center of the metal pad to the center axis of the base material, where the first dimension is parallel to the line.
Abstract:
The present invention provides a structure. In an exemplary embodiment, the structure includes a base material, at least one metal pad, where a first surface of the metal pad is in contact with the base material, and a metal pedestal, where the metal pedestal is in contact with the metal pad, where a radial alignment of the metal pad is shifted by an offset distance, with respect to the metal pedestal, such that the metal pad is shifted towards a center axis of the base material, where a first dimension of the metal pad is smaller than a second dimension of the metal pad, where the second dimension is orthogonal to a line running from a center of the metal pad to the center axis of the base material, where the first dimension is parallel to the line.
Abstract:
The present invention provides a structure. In an exemplary embodiment, the structure includes a base material, at least one metal pad, where a first surface of the metal pad is in contact with the base material, and a metal pedestal, where the metal pedestal is in contact with the metal pad, where a radial alignment of the metal pad is shifted by an offset distance, with respect to the metal pedestal, such that the metal pad is shifted towards a center axis of the base material, where a first dimension of the metal pad is smaller than a second dimension of the metal pad, where the second dimension is orthogonal to a line running from a center of the metal pad to the center axis of the base material, where the first dimension is parallel to the line.
Abstract:
Embodiments are directed to a method of forming a semiconductor chip package and resulting structures having an annular PSPI region formed under a BLM pad. An annular region is formed under a barrier layer metallurgy (BLM) pad. The annular region includes a photosensitive polyimide (PSPI). A conductive pedestal is formed on a surface of the BLM pad and a solder bump is formed on a surface of the conductive pedestal. The annular PSPI region reduces wafer warpage and ULK peeling stress.
Abstract:
A structure including a stack of conformal layers on top of a dielectric layer and within an opening in the dielectric layer, the stack of layers including a first layer, a second layer, a third layer, and a fourth layer, each formed successively one on top of another with the first layer being in direct contact with the dielectric layer, and a conductive feature located directly on top of the fourth layer within the opening.
Abstract:
Solder bump connections and methods for fabricating solder bump connections. A passivation layer is formed on a dielectric layer. Via openings extend through the passivation layer from a top surface of the passivation layer to a metal line in the passivation layer. A conductive layer is formed on the top surface of the passivation layer and within each via opening. When the passivation layer and the conductive layer are planarized, a plug is formed that includes sections in the via openings. Each section is coupled with the metal line.