摘要:
A method for fabricating a low resistance, low inductance device for high current semiconductor flip-chip products. A structure is produced, which comprises a semiconductor chip with metallization traces, copper lines in contact with the traces, and copper bumps located in an orderly and repetitive arrangement on each line so that the bumps of one line are positioned about midway between the corresponding bumps of the neighboring lines. A substrate is provided which has elongated copper leads with first and second surfaces, the leads oriented at right angles to the lines. The first surface of each lead is connected to the corresponding bumps of alternating lines using solder elements. Finally, the assembly is encapsulated in molding compound so that the second lead surfaces remain un-encapsulated.
摘要:
Disclosed herein is a method of manufacturing a semiconductor package with a solder standoff on lead pads that reach to the edge of the package (non-pullback leads). It includes encapsulating a plurality of die on a lead frame strip. The lead frame strip comprises a plurality of package sites, which further comprises a plurality of lead pads and a die pad. The method also includes forming a channel between the lead pads of nearby package sites without singulating the packages. Another step in the method includes disposing solder on the lead pads, the die pad, or the lead pads and the die pads without substantially covering the channel with solder. The manufacturing method further includes singulating the packages.
摘要:
A QFN package and method of making same is provided comprising a substrate having a metal line extending from a connection element on a perimeter region of the substrate to a high current contact pad on interior region of the substrate. A semiconductor chip having an active surface generally faces the interior region of the substrate, wherein a heat-dissipating patterned metal distribution layer is formed over the active surface and electrically connected to an active component thereon. A solder strip electrically and thermally connects the high current contact pad and the metal distribution layer, and a mold compound generally encapsulates the semiconductor chip. The solder strip is generally uniform in depth and surface area, wherein low electrical resistance and inductance is provided between the high current contact pad and the metal distribution layer. An integrated heat sink may be further formed or placed on a passive surface of the chip.
摘要:
An integrated circuit (IC) includes a substrate having a semiconducting surface, a first array of devices on and in the semiconducting surface including first and second coacting current conducting nodes, a plurality of layers disposed on the substrate and including at a electrically conductive layers and dielectric layer, and a plurality of bump pads on or in the top surface of the dielectric layers. In the IC, the electrically conductive layers define electrical traces, where a first portion of the electrical traces contact a first portion of the bump pads exclusively to a portion of the first coacting current conducting nodes, where a second portion of the electrical traces contact a second portion of the bump pads exclusively to a portion of the second coacting current conducting nodes, and where the electrical traces are electrically isolated from one another by the dielectric layers.
摘要:
A method for fabricating a low resistance, low inductance device for high current semiconductor flip-chip products. A structure is produced, which comprises a semiconductor chip with metallization traces, copper lines in contact with the traces, and copper bumps located in an orderly and repetitive arrangement on each line so that the bumps of one line are positioned about midway between the corresponding bumps of the neighboring lines. A substrate is provided which has elongated copper leads with first and second surfaces, the leads oriented at right angles to the lines. The first surface of each lead is connected to the corresponding bumps of alternating lines using solder elements. Finally, the assembly is encapsulated in molding compound so that the second lead surfaces remain un-encapsulated.
摘要:
A high current semiconductor device (for example QFN for 30 to 70 A) with low resistance and low inductance is encapsulated by molding compound (401, height 402 about 0.9 mm) so that the second lead surfaces 110b remain un-encapsulated. A copper heat slug (404) may be attached to chip surface (101b) using thermally conductive adhesive (403). Chip surface (101a), protected by an overcoat (103) has metallization traces (102). Copper-filled windows (107) contact the traces and copper layers (105) parallel to traces (102). Copper bumps (108) are formed on each line in an orderly and repetitive arrangement so that the bumps of one line are positioned about midway between the bumps of the neighboring lines. A substrate has elongated leads (110) oriented at right angles to the lines; the leads connect the corresponding bumps of alternating lines.
摘要:
Disclosed herein is a method of manufacturing a semiconductor package with a solder standoff on lead pads that reach to the edge of the package (non-pullback leads). It includes encapsulating a plurality of die on a lead frame strip. The lead frame strip comprises a plurality of package sites, which further comprises a plurality of lead pads and a die pad. The method also includes forming a channel between the lead pads of nearby package sites without singulating the packages. Another step in the method includes disposing solder on the lead pads, the die pad, or the lead pads and the die pads without substantially covering the channel with solder. The manufacturing method further includes singulating the packages.
摘要:
Packaged microelectronic semiconductor devices and methods for their assembly are described. According to preferred embodiments of the invention, chip-on-lead techniques are adapted to provide chip-on-lead packages using cantilevered leads. Exemplary embodiments of the invention include methods using a temporary brace to support the cantilevered leads during chip mounting. Versatile chip package embodiments are disclosed including those in which the chip mounting pad is smaller than the chip(s) mounted thereupon, and further examples wherein the chip mounting pad is dispensed with and a chip is mounted on the cantilevered leads alone.
摘要:
An electronic device has a semiconductor chip (101) with a surface and an electric circuit including terminals on the surface. The circuit has a first (103) and a second terminal (104) with a metallurgical composition for wire bonding. The chip has a conductive wire (120) above the chip surface, which has a length and a first and a second end; the first end is attached to the first terminal and the second end to the second terminal. The wire is shaped to form at least one sequence of a concave and a convex portion. The sequence may be configured to form a loop, or multiple wire loops resulting in a spiraling wire coil. The number, shape, and spatial sequence of the loops control the electrical inductance of the wire; the inductance is selected to fine-tune the high frequency characteristics of the circuit.
摘要:
A semiconductor device comprising a metallic leadframe (103) with a first surface (103a) and a second surface (103b). The leadframe includes a chip pad (104) and a plurality of segments (107); the chip pad is held by a plurality of straps (105), wherein each strap has a groove (106). A chip (101) is mounted on the chip pad and electrically connected to the segments. A heat spreader (110) is disposed on the first surface of the leadframe; the heat spreader has its central portion (110a) spaced above the chip connections (108), and also has positioning members (110b) extending outwardly from the edges of the central portion so that they rest in the grooves of the straps. Encapsulation material surrounds the chip, the electrical connections, and the spreader positioning members, and fills the space between the spreader and the chip, while leaving the second leadframe surface and the central spreader portion exposed.