Abstract:
Pillar-type connections and methods for fabricating a pillar-type connection. A conductive layer is formed on a bond pad. A second conductive layer is formed on the first conductive layer to define a conductive pillar. The conductive pillar includes a non-planar top surface defining a recess. The recess may receive a portion of a solder body used to connect the conductive pillar with a package.
Abstract:
A metal-insulator-metal (MIM) capacitor using barrier layer metallurgy and methods of manufacture are disclosed. The method includes forming a bottom plate of a metal-insulator-metal (MIM) capacitor and a bonding pad using a single masking process. The method further includes forming a MIM dielectric on the bottom plate. The method further includes forming a top plate of the MIM capacitor on the MIM dielectric. The method further includes forming a solder connection on the bonding pad.
Abstract:
Structures and methods of making a flip chip package that employ polyimide pads of varying heights at a radial distance from a center of an integrated circuit (IC) chip for a flip chip package. The polyimide pads may be formed under electrical connectors, which connect the IC chip to a chip carrier of the flip chip package, so that electrical connectors formed on polyimide pads of greater height are disposed at a greater radial distance from the center of the IC chip, while electrical connectors formed on polyimide pads of a lesser height are disposed more proximately to the center of the IC chip. Electrical connectors of a greater relative height to the IC chip's surface may compensate for a gap, produced by heat-induced warpage during the making of the flip chip package, that separates the electrical connectors on the IC chip from flip chip attaches on the chip carrier.
Abstract:
Solder bump connections and methods for fabricating solder bump connections. A passivation layer is formed on a dielectric layer. Via openings extend through the passivation layer from a top surface of the passivation layer to a metal line in the passivation layer. A conductive layer is formed on the top surface of the passivation layer and within each via opening. When the passivation layer and the conductive layer are planarized, a plug is formed that includes sections in the via openings. Each section is coupled with the metal line.
Abstract:
Disclosed are a method for metallization during semiconductor wafer processing and the resulting structures. In this method, a passivation layer is patterned with first openings aligned above and extending vertically to metal structures below. A mask layer is formed and patterned with second openings aligned above the first openings, thereby forming two-tier openings extending vertically through the mask layer and passivation layer to the metal structures below. An electrodeposition process forms, in the two-tier openings, both under-bump pad(s) and additional metal feature(s), which are different from the under-bump pad(s) (e.g., a wirebond pad; a final vertical section of a crackstop structure; and/or a probe pad). Each under-bump pad and additional metal feature initially comprises copper with metal cap layers thereon. The mask layer is removed, an additional mask layer is formed and patterned with third opening(s) exposing only the under-bump pad(s) and solder material is deposited on the under-bump pad(s).
Abstract:
Disclosed is a chip and method of forming the chip with improved conductive pads that allow for flexible C4 connections with a chip carrier or with another integrated circuit chip. The pads have a three-dimensional geometric shape (e.g., a pyramid or cone shape) with a base adjacent to the surface of the chip, a vertex opposite the base and, optionally, mushroom-shaped cap atop the vertex. Each pad can include a single layer of conductive material or multiple layers of conductive material (e.g., a wetting layer stacked above a non-wetting layer). The pads can be left exposed to allow for subsequent connection to corresponding solder bumps on a chip carrier or a second chip. Alternatively, solder balls can be positioned on the conductive pads to allow for subsequent connection to corresponding solder-paste filled openings on a chip carrier or a second chip.
Abstract:
Pillar interconnect chip to package and global wiring structures and methods of manufacturing are discloses. The method includes forming a resist directly over at least one landing pad and at least one wiring layer, and forming a first pattern in the resist over the landing pad and a second pattern over the wiring layer, using a single lithography step. The method further includes forming metal in the first pattern in electrical contact with the landing pad. The method further includes removing remaining resist over the wiring layer to deepen the second pattern. The method further includes forming a pillar interconnect in the first pattern and a wiring in the second pattern by adding additional metal on the metal in the first pattern and over the at least one wiring layer in the second pattern, respectively. The method further includes removing any remaining resist.
Abstract:
Solder bump connections and methods for fabricating solder bump connections. The method includes forming a layer stack containing first and second conductive layers, forming a dielectric passivation layer on a top surface of the second conductive layer, and forming a via opening extending through the dielectric passivation layer to the top surface of the second conductive layer. The method further includes forming a conductive plug in the via opening. The solder bump connection includes first and second conductive layers comprised of different conductors, a dielectric passivation layer on a top surface of the second conductive layer, a via opening extending through the dielectric passivation layer to the top surface of the second conductive layer, and a conductive plug in the via opening.
Abstract:
Embodiments are directed to a method of forming a semiconductor chip package and resulting structures having a mixed under-bump metallization (UBM) size and pitch on a single die. A first set of UBMs having a first total plateable surface area is formed on a first region of a die. A second set of UBMs having an equal total plateable surface area is formed on a second region of the die. A solder bump having a calculated solder height is applied to a plateable surface of each UBM. The solder height is calculated such that a volume of solder in the first region is equal to a volume of solder in the second region.
Abstract:
Disclosed are interconnects in which one substrate having a high melting temperature, lead-free solder column is joined to a second substrate having openings filled with a low melting temperature, lead-free solder such that the high melting temperature, lead-free solder column penetrates into the low melting temperature, lead-free solder so as to obtain a short moment arm of solder.