Abstract:
A system and method for conductive pillars is provided. An embodiment comprises a conductive pillar having trenches located around its outer edge. The trenches are used to channel conductive material such as solder when a conductive bump is formed onto the conductive pillar. The conductive pillar may then be electrically connected to another contact through the conductive material.
Abstract:
A method for fabricating a semiconductor device with a heterogeneous solder joint includes: providing a semiconductor die; providing a coupled element; and soldering the semiconductor die to the coupled element with a first solder joint. The first solder joint includes: a solder material including a first metal composition; and a coating including a second metal composition, different from the first metal composition, the coating at least partially covering the solder material. The second metal composition has a greater stiffness and/or a higher melting point than the first metal composition.
Abstract:
Provided are a lead-free solder alloy which consists of Sb in an amount of more than 3.0% but 10% or less by mass, and the balance including Sn, and others.
Abstract:
A system and method for conductive pillars is provided. An embodiment comprises a conductive pillar having trenches located around its outer edge. The trenches are used to channel conductive material such as solder when a conductive bump is formed onto the conductive pillar. The conductive pillar may then be electrically connected to another contact through the conductive material.
Abstract:
In some embodiments, an interconnection structure can electrically and physically couple a first semiconductor die and a second semiconductor die. The interconnection structure can include a first portion at the first semiconductor die and a second portion at the second semiconductor die. The first portion can include a first conductive pillar with a concave bonding surface, a first annular barrier layer, and a first annular solder layer. The first annular barrier layer can surround a sidewall of the first conductive pillar, and the first annular solder layer can surround the first barrier layer. The second portion can include a second conductive pillar having a convex bonding surface, the convex bonding surface coupled to the concave bonding surface. The second interconnection structure can further include a second annular solder layer surrounding a second annular barrier layer surrounding the second conductive pillar.
Abstract:
Provided are a lead-free solder alloy which consists of Sb in an amount of more than 3.0% but 10% or less by mass, and the balance including Sn, and others.
Abstract:
A system and method for conductive pillars is provided. An embodiment comprises a conductive pillar having trenches located around its outer edge. The trenches are used to channel conductive material such as solder when a conductive bump is formed onto the conductive pillar. The conductive pillar may then be electrically connected to another contact through the conductive material.
Abstract:
Disclosed is a chip and method of forming the chip with improved conductive pads that allow for flexible C4 connections with a chip carrier or with another integrated circuit chip. The pads have a three-dimensional geometric shape (e.g., a pyramid or cone shape) with a base adjacent to the surface of the chip, a vertex opposite the base and, optionally, mushroom-shaped cap atop the vertex. Each pad can include a single layer of conductive material or multiple layers of conductive material (e.g., a wetting layer stacked above a non-wetting layer). The pads can be left exposed to allow for subsequent connection to corresponding solder bumps on a chip carrier or a second chip. Alternatively, solder balls can be positioned on the conductive pads to allow for subsequent connection to corresponding solder-paste filled openings on a chip carrier or a second chip.
Abstract:
A semiconductor device includes a semiconductor chip. A substrate is arranged in opposition to the semiconductor chip. A first electrode is placed on the semiconductor chip while a second electrode is placed on the substrate. An intermetallic compound layer is arranged between the first electrode and the second electrode. Each of the first and second electrodes is made of predetermined electrode material. The intermetallic compound layer is made of the electrode material and bonding material supplied to at least one of the first and second electrodes.
Abstract:
Methods of fabricating semiconductor packages are provided. One of the methods includes forming a protection layer including metal on a first surface of a substrate to cover a semiconductor device disposed on the first surface of the substrate, attaching a support substrate to the protection layer by using an adhesive member, processing a second surface of the substrate opposite to the protection layer to remove a part of the substrate, and detaching the support substrate from the substrate.