Abstract:
A programming circuit is provided. As a conductive memory cell is programmed, its resistance changes. The provided programming circuit monitors the changing resistance while programming the memory cell. The programming circuit can be used to only program the memory cell for as long as programming is actually needed. Additionally, the programming circuit can be used to only program the memory cell when it has a value that needs to be changed.
Abstract:
A treated conductive element is provided. A conductive element can be treated by depositing either a reactive metal or a very thin layer of material on the conductive element. The reactive metal (or very thin layer of material) would typically be sandwiched between the conductive element and an electrode. The structure additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays.
Abstract:
A structure for a memory device including a plurality of substantially planar thin-film layers or a plurality of conformal thin-film layers is disclosed. The thin-film layers form a memory element that is electrically in series with first and second cladded conductors and operative to store data as a plurality of conductivity profiles. A select voltage applied across the first and second cladded conductors is operative to perform data operations on the memory device. The memory device may optionally include a non-ohmic device electrically in series with the memory element and the first and second cladded conductors. Fabrication of the memory device does not require the plurality of thin-film layers be etched in order to form the memory element. The memory element can include a CMO layer having a selectively crystallized polycrystalline portion and an amorphous portion. The cladded conductors can include a core material made from copper.
Abstract:
Embodiments relate generally to semiconductors and memory technology, and more particularly, to systems, integrated circuits, and methods to implement a memory architecture that includes local bit lines for accessing subsets of memory elements, such as memory elements based on third dimensional memory technology. In at least some embodiments, an integrated circuit includes a cross-point memory array formed above a logic layer. The cross-point memory array includes X-lines and Y-lines, of which at least one Y-line includes groups of Y-line portions. Each of the Y-line portions can be arranged in parallel with other Y-line portions within a group of the Y-line portions. Also included are memory elements disposed between a subset of the X-lines and the group of the Y-line portions. In some embodiments, a decoder is configured to select a Y-line portion from the group of Y-line portions to access a subset of the memory elements.
Abstract:
A structure for a memory device including a plurality of substantially planar thin-film layers or a plurality of conformal thin-film layers is disclosed. The thin-film layers form a memory element that is electrically in series with first and second cladded conductors and operative to store data as a plurality of conductivity profiles. A select voltage applied across the first and second cladded conductors is operative to perform data operations on the memory device. The memory device may optionally include a non-ohmic device electrically in series with the memory element and the first and second cladded conductors. Fabrication of the memory device does not require the plurality of thin-film layers be etched in order to form the memory element. The memory element can include a CMO layer having a selectively crystallized polycrystalline portion and an amorphous portion. The cladded conductors can include a core material made from copper.
Abstract:
A memory using mixed valence conductive oxides is disclosed. The memory includes a mixed valence conductive oxide that is less conductive in its oxygen deficient state and a mixed electronic ionic conductor that is an electrolyte to oxygen and promotes an electric field effective to cause oxygen ionic motion.
Abstract:
A treated conductive element is provided. A conductive element can be treated by depositing either a reactive metal or a very thin layer of material on the conductive element. The reactive metal (or very thin layer of material) would typically be sandwiched between the conductive element and an electrode. The structure additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays.
Abstract:
Memory cell formation using ion implant isolated conductive metal oxide is disclosed, including forming a bottom electrode below unetched conductive metal oxide layer(s), forming the unetched conductive metal oxide layer(s) including depositing at least one layer of a conductive metal oxide (CMO) material (e.g., PrCaMnOx, LaSrCoOx, LaNiOx, etc.) over the bottom electrode. At least one portion of the layer of CMO is configured to act as a memory element without etching, and performing ion implantation on portions of the layer(s) of CMO to create insulating metal oxide (IMO) regions in the layer(s) of CMO. The IMO regions are positioned adjacent to electrically conductive CMO regions in the unetched layer(s) of CMO and the electrically conductive CMO regions are disposed above and in contact with the bottom electrode and form memory elements operative to store non-volatile data as a plurality of conductivity profiles (e.g., resistive states indicative of stored data).
Abstract:
A low read current architecture for memory. Bit lines of a cross point memory array are allowed to be charged by a selected word line until a minimum voltage differential between a memory state and a reference level is assured.
Abstract:
Embodiments relate generally to semiconductors and memory technology, and more particularly, to systems, integrated circuits, and methods to implement a memory architecture that includes local bit lines for accessing subsets of memory elements, such as memory elements based on third dimensional memory technology. In at least some embodiments, an integrated circuit includes a cross-point memory array formed above a logic layer. The cross-point memory array includes X-lines and Y-lines, of which at least one Y-line includes groups of Y-line portions. Each of the Y-line portions can be arranged in parallel with other Y-line portions within a group of the Y-line portions. Also included are memory elements disposed between a subset of the X-lines and the group of the Y-line portions. In some embodiments, a decoder is configured to select a Y-line portion from the group of Y-line portions to access a subset of the memory elements.