Abstract:
A metal-oxide-semiconductor field-effect transistor (MOSFET) with integrated passive structures and methods of manufacturing the same is disclosed. The method includes forming a stacked structure in an active region and at least one shallow trench isolation (STI) structure adjacent to the stacked structure. The method further includes forming a semiconductor layer directly in contact with the at least one STI structure and the stacked structure. The method further includes patterning the semiconductor layer and the stacked structure to form an active device in the active region and a passive structure of the semiconductor layer directly on the at least one STI structure.
Abstract:
After formation of a gate cavity straddling at least one semiconductor material portion, a gate dielectric layer and at least one work function material layer is formed over the gate dielectric layer. The at least one work function material layer and the gate dielectric layer are patterned such that remaining portions of the at least one work function material layer are present only in proximity to the at least one semiconductor material portion. A conductive material having a greater conductivity than the at least one work function material layer is deposited in remaining portions of the gate cavity. The conductive material portion within a replacement gate structure has the full width of the replacement gate structure in regions from which the at least one work function material layer and the gate dielectric layer are removed.
Abstract:
After formation of a gate cavity straddling at least one semiconductor material portion, a gate dielectric layer and at least one work function material layer is formed over the gate dielectric layer. The at least one work function material layer and the gate dielectric layer are patterned such that remaining portions of the at least one work function material layer are present only in proximity to the at least one semiconductor material portion. A conductive material having a greater conductivity than the at least one work function material layer is deposited in remaining portions of the gate cavity. The conductive material portion within a replacement gate structure has the full width of the replacement gate structure in regions from which the at least one work function material layer and the gate dielectric layer are removed.
Abstract:
A metal-oxide-semiconductor field-effect transistor (MOSFET) with integrated passive structures and methods of manufacturing the same is disclosed. The method includes forming a stacked structure in an active region and at least one shallow trench isolation (STI) structure adjacent to the stacked structure. The method further includes forming a semiconductor layer directly in contact with the at least one STI structure and the stacked structure. The method further includes patterning the semiconductor layer and the stacked structure to form an active device in the active region and a passive structure of the semiconductor layer directly on the at least one STI structure.
Abstract:
After forming source/drain trenches within a top semiconductor layer of a semiconductor-on-insulator (SOI) substrate, portions of the trenches adjacent channel regions of a semiconductor structure are covered either by sacrificial spacers formed on sidewalls of the trenches or by photoresist layer portions. The sacrificial spacers or photoresist layer portions shield portions of the top semiconductor layer underneath the trenches from subsequent ion implantation for forming junction butting. The ion implantation regions thus are confined only in un-shielded, sublayered portions of the top semiconductor layer that are away from the channel regions of the semiconductor structure. The width of the ion implantation regions are controlled such that the implanted dopants do not diffuse into the channel regions during subsequent thermal cycles so as to suppress the short channel effects.
Abstract:
A structure and method provided for integrating SOI CMOS FETs and NVRAM memory devices. The structure includes a SOI substrate containing a semiconductor substrate, a SOI layer, and a BOX layer formed between the semiconductor substrate and the SOI layer. The SOI substrate includes predefined SOI device and NVRAM device regions. A SOI FET is formed in the SOI device region. The SOI FET includes portions of the BOX layer and SOI layers, an SOI FET gate dielectric layer, and a gate conductor layer. The structure further includes a NVRAM device formed in the NVRAM device region. The NVRAM device includes a tunnel oxide, floating gate, blocking oxide, and control gate layers. The tunnel oxide layer is coplanar with the portion of the BOX layer in the SOI device region. The floating gate layer is coplanar with the portion of the semiconductor layer in the SOI device region.
Abstract:
A method of fabricating a semiconductor structure provided with a plurality of gated-diodes having a silicided anode (p-doped region) and cathode (n-doped region) and a high-K gate stack made of non-silicided gate material, the gated-diodes being adjacent to FETs, each of which having a silicided source, a silicided drain and a silicided HiK gate stack. The semiconductor structure eliminates a cap removal RIE in a gate first High-K metal gate flow from the region of the gated-diode. The lack of silicide and the presence of a nitride barrier on the gate of the diode are preferably made during the gate first process flow. The absence of the cap removal RIE is beneficial in that diffusions of the diode are not subjected to the cap removal RIE, which avoids damage and allows retaining its highly ideal junction characteristics.
Abstract:
An ESD protection device is disclosed that uses a BSPDN to provide potential(s) to the ESD protection device. The utilization of the BSPDN reduces resistance drops induced during high current ESD events, which results in robust ESD protection. The utilization of the BSPDN also reduces the footprint area of the ESD protection circuit relative to known ESD protection devices that utilize respective frontside contacts to VDD, VSS, and I/O. Further, the disclosed ESD protection circuit may utilize the same or similar structures as that are used by microdevices (e.g., transistors, or the like) within the semiconductor IC device, which may decrease fabrication complexities thereof.
Abstract:
A semiconductor structure includes a substrate and a gate-all-around field effect transistor disposed over the substrate. The gate-all-around field effect transistor includes a first source-drain region; a second source-drain region; at least one channel region interconnecting the first and second source drain regions; and a gate structure surrounding the at least one channel region. A self-aligned substrate isolation (SASI) layer is located between the substrate and the gate structure and extends over a width of the gate structure.
Abstract:
A heat pipe is provided as an electrically inactive structure to dissipate heat that is generated by vertically stacked field effect transistors (FETs). The heat pipe is present in an electrically inactive device area which is located adjacent to an electrically active device area that includes the vertically stacked FETs. The heat pipe includes at least one vertical interconnect structure that continuously extends between each tier of the vertically stacked FETs