Abstract:
A packaging structure includes a first substrate including a first metal terminal and a first protruding resin portion formed at a first surface; a second substrate including a second metal terminal and a second protruding resin portion formed at a second surface, the second metal terminal being made of the same kind of metal as the first metal terminal; and a sealing portion filled between the first surface of the first substrate and the second surface of the second substrate, the first metal terminal and the second metal terminal being directly bonded with each other, the first protruding resin portion and the second protruding resin portion being directly bonded with each other, each of the first protruding resin portion and the second protruding resin portion being made of a resin material that does not include fillers, and the sealing portion being made of a resin material including fillers.
Abstract:
A packaging structure includes a first substrate including a first metal terminal and a second metal terminal whose height is lower than the height of the first metal terminal; and a second substrate including a third metal terminal and a fourth metal terminal whose height is lower than the height of the third metal terminal, the second substrate being provided on the first substrate, the first metal terminal and the third metal terminal being directly bonded with each other, and the second metal terminal and the fourth metal terminal being bonded via a connection portion.
Abstract:
According to this disclosure, a method of manufacturing an electronic device is provided, which includes exposing a top surface of a first electrode of a first electronic component to organic acid, irradiating the top surface of the first electrode exposed to the organic acid with ultraviolet light, and bonding the first electrode and a second electrode of a second electronic component by heating and pressing the first electrode and the second electrode each other.
Abstract:
According to this disclosure, a method of manufacturing an electronic device is provided, which includes exposing a top surface of a first electrode of a first electronic component to organic acid, irradiating the top surface of the first electrode exposed to the organic acid with ultraviolet light, and bonding the first electrode and a second electrode of a second electronic component by heating and pressing the first electrode and the second electrode each other.
Abstract:
A conductive structure for a semiconductor chip and a method for forming the conductive structure are provided. The semiconductor chip comprises a semiconductor substrate, a pad, a passivation layer and a patterned insulating layer. The patterned insulating layer is disposed on the passivation layer and partially and directly covers the first opening of the pad to expose a second opening. The conductive structure comprises an under bump metal (UBM) layer and a conductive bump. The UBM layer is disposed in the second opening defined by the patterned insulating layer and is electrically connected to the pad. The conductive bump is disposed on the UBM layer and is electrically connected to the UBM layer. The upper surface of the conductive bump is greater than the upper surface of the patterned insulating layer, while the portion of the conductive bump disposed in the second opening is covered by the UBM layer.
Abstract:
[Problem] A semiconductor device which achieves a fine pitch, a high throughput and a high connection reliability, especially in flip-chip mounting is provided. A method for manufacturing the semiconductor device and a circuit device using the semiconductor device are also provided.[Means for solving the problem] The semiconductor device has: an electrode; an insulating part having an opening on the electrode; a protruding part formed on the electrode; a protecting part which is formed at the periphery of the protruding part and electrically isolates the protruding part; and a bonding part which is formed on the protecting part by being spaced apart from the protruding part. An upper surface of the protruding part, an upper surface of the protecting part, and an upper surface of the bonding part form the same plane.
Abstract:
A conductive structure for a semiconductor chip and a method for forming the conductive structure are provided. The semiconductor chip comprises a semiconductor substrate, a pad, a passivation layer and a patterned insulating layer. The patterned insulating layer is disposed on the passivation layer and partially and directly covers the first opening of the pad to expose a second opening. The conductive structure comprises an under bump metal (UBM) layer and a conductive bump. The UBM layer is disposed in the second opening defined by the patterned insulating layer and is electrically connected to the pad. The conductive bump is disposed on the UBM layer and is electrically connected to the UBM layer. The upper surface of the conductive bump is greater than the upper surface of the patterned insulating layer, while the portion of the conductive bump disposed in the second opening is covered by the UBM layer.
Abstract:
Disclosed are embodiments of an improved semiconductor wafer structure having protected clusters of carbon nanotubes (CNTs) on the back surface and a method of forming the improved semiconductor wafer structure. Also disclosed are embodiments of a semiconductor module with exposed CNTs on the back surface for providing enhanced thermal dissipation in conjunction with a heat sink and a method of forming the semiconductor module using the disclosed semiconductor wafer structure.
Abstract:
A semiconductor circuit substrate includes a transistor-forming substrate and a circuit-forming substrate. The transistor-forming substrate is a GaN substrate and has a Bipolar Junction Transistor (BJT) located in its top surface. The bottom surface of the transistor-forming substrate is flat and has contact regions. The circuit-forming substrate is a material other than a compound semiconductor and has no semiconductor active elements. The circuit-forming substrate has a flat top surface, contact regions buried in and exposed at the top surface, and passive circuits. The transistor-forming substrate and the circuit-forming substrate are directly bonded together without any intervening film, such as an insulating film.
Abstract:
The present disclosure provides a semiconductor structure and a method for preparing it. After planarization of the Cu layer, by means of wet etch process, Cu residues near an edge of a Cu post can be effectively removed, and a first height difference is configured to be between the Cu post and an insulating layer. Further, an Si substrate is then dry etched, so that a second height difference is configured to be between the Si substrate and the insulating layer, and the second height difference is arranged to be greater than the first height difference. In this way, a connection of Cu inside and outside the insulating layer may be further avoided, thereby effectively avoiding an influence on electrical properties of a device.