Abstract:
A system includes a cross-point memory array and a decoder circuit coupled to the cross-point memory array. The decoder circuit includes a predecoder having predecode logic to generate a control signal and a level shifter circuit to generate a voltage signal. The decoder circuit further includes a post-decoder coupled to the predecoder, the post-decoder including a first stage and a second stage coupled to the first stage, the control signal to control the first stage and the second stage to route the voltage signal through the first stage and the second stage to a selected conductive array line of a plurality of conductive array lines coupled to a memory array.
Abstract:
Circuitry for generating voltage levels operative to perform data operations on non-volatile re-writeable memory arrays are disclosed. In some embodiments an integrated circuit includes a substrate and a base layer formed on the substrate to include active devices configured to operate within a first voltage range. Further, the integrated circuit can include a cross-point memory array formed above the base layer and including re-writable two-terminal memory cells that are configured to operate, for example, within a second voltage range that is greater than the first voltage range. Conductive array lines in the cross-point memory array are electrically coupled with the active devices in the base layer. The integrated circuit also can include X-line decoders and Y-line decoders that include devices that operate in the first voltage range. The active devices can include other active circuitry such as sense amps for reading data from the memory cells, for example.
Abstract:
Methods for determining memory cell states during a read operation using a detection scheme that reduces the area of detection circuitry for detecting the states of the memory cells by time multiplexing the use of portions of the detection circuitry are described. The read operation may include a precharge phase, a sensing phase, and a detection phase. In some embodiments, a first bit line and a second bit line may be precharged to a read voltage in parallel, and then sensing and/or detection of selected memory cells corresponding with the first bit line and the second bit line may be performed serially using the same detection circuitry by time multiplexing the use of the detection circuitry. In some cases, the time multiplexed detection circuitry may be used for detecting two or more states corresponding with two or more memory cells being sensed during a read operation.
Abstract:
There are provided a storage device and a storage unit capable of improving retention performance of an intermediate resistance value in writing at a low current, and a storage device and a storage unit capable of reducing random telegraph noise. A storage device of one embodiment of the present technology includes a first electrode, a storage layer, and a second electrode in this order, and the storage layer includes: an ion source layer including one or more kinds of chalcogen elements selected from tellurium (Te), sulfur (S), and selenium (Se), and one or more kinds of transition metal elements selected from Group 4 elements, Group 5 elements, and Group 6 elements of the periodic table; and a resistance change layer including boron (B) and oxygen (O). A storage device of another embodiment of the present technology includes the above-described ion source layer and a resistance change layer including one or more kinds of transaction metal elements selected from Group 4 elements, Group 5 elements, and Group 6 elements of the periodic table, and oxygen (O).
Abstract:
A memory cell including conductive oxide electrodes is disclosed. The memory cell includes a memory element operative to store data as a plurality of resistive states. The memory element includes a layer of a conductive metal oxide (CMO) (e.g., a perovskite) in contact with an electrode that may comprise one or more layers of material. At least one of those layers of material can be a conductive oxide (e.g., a perovskite such as LaSrCoO3-LSCoO or LaNiO3-LNO) that is in contact with the CMO. The conductive oxide layer can be selected as a seed layer operative to provide a good lattice match with and/or a lower crystallization temperature for the CMO. The conductive oxide layer may also be in contact with a metal layer (e.g., Pt). The memory cell additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays, such as non-volatile two-terminal cross-point memory arrays.
Abstract:
A method of forming circuitry components includes forming a stack of horizontally extending and vertically overlapping features. The stack has a primary portion and an end portion. At least some of the features extend farther in the horizontal direction in the end portion moving deeper into the stack in the end portion. Operative structures are formed vertically through the features in the primary portion and dummy structures are formed vertically through the features in the end portion. Horizontally elongated openings are formed through the features to form horizontally elongated and vertically overlapping lines from material of the features. The lines individually extend from the primary portion into the end portion, and individually laterally about sides of vertically extending portions of both the operative structures and the dummy structures. Sacrificial material that is elevationally between the lines is at least partially removed in the primary and end portions laterally between the horizontally elongated openings. Other aspects and implementations are disclosed.
Abstract:
In a method of operating a semiconductor device, a resistance value of a variable resistance element is changed from a first resistance value to a second resistance value by applying a first voltage to the variable resistance element; and a first current that flows through the variable resistance element is sensed. A second voltage for changing the resistance value of the variable resistance element from the second resistance value to the first resistance value is modulated based on a dispersion of the first current, and the first voltage is re-applied to the variable resistance element based on a dispersion of the first current.
Abstract:
A nonvolatile semiconductor memory device comprises a cell array including a plurality of first lines, a plurality of second lines intersecting the plurality of first lines, and a plurality of memory cells arranged in matrix and connected at intersections of the first and second lines between both lines, each memory cell containing a serial circuit of an electrically erasable programmable variable resistive element of which resistance is nonvolatilely stored as data and a non-ohmic element; and a plurality of access circuits operative to simultaneously access the memory cells physically separated from each other in the cell array.
Abstract:
A crosspoint array has been shown having a plurality of bitlines and wordlines; and a plurality of crossbar elements, with each crossbar element being disposed between a bitline and a wordline and with each crossbar element having at least a solid electrolyte material used as a rectifier in series with a symmetric or substantially symmetric resistive memory node. The crossbar elements are responsive to the following voltages: a first set of voltages to transition the solid electrolyte in the crossbar elements from an OFF state to an ON state, a second set of voltages to read or program the symmetric resistive memory, and a third set of voltages to transition solid electrolyte from an ON state to an OFF state.
Abstract:
A method of forming a memory cell is provided that includes forming a steering element above a substrate, forming a material layer on the substrate, patterning and etching the material layer, and oxidizing the patterned and etched material layer to form a reversible resistance-switching material. Numerous other aspects are provided.