Abstract:
A logic semiconductor device includes a plurality of active patterns extending in a horizontal direction and being spaced apart from each other in a vertical direction, an isolation layer defining the active patterns, a plurality of gate patterns extending in the vertical direction on the active patterns and the isolation layer, the gate patterns being spaced apart from each other in the horizontal direction, a plurality of lower wirings extending in the horizontal direction over the gate patterns, a plurality of upper wirings extending in the vertical direction over the lower wirings, a through contact connecting at least one upper wiring of the upper wirings and at least one gate pattern of the gate patterns, the through contact extending from a bottom surface of the upper wiring to a position under a bottom surface of one of the lower wirings relative to the active patterns.
Abstract:
An integrated circuit including a standard cell includes: a plurality of first wells extending in a first horizontal direction with a first width and of a first conductivity type; and a plurality of second wells extending in the first horizontal direction with a second width and having a second conductivity type, wherein the plurality of first wells and the plurality of second wells are alternately arranged in a second horizontal direction that is orthogonal to the first horizontal direction, and when m and n are integers greater than or equal to 3, the standard cell has a length in the second horizontal direction, the length being equal to a sum of m times a half of the first width and n times a half of the second width.
Abstract:
Provided is an integrated circuit including at least one cell, the at least one cell includes first and second active regions spaced apart from each other, a dummy region disposed between the first and second active regions, at least one first active fin disposed in the first active region and extending in a first direction, at least one second active fin extending along the first direction over the entire length of the second active region, and an active gate line extending in a second direction that is substantially perpendicular to the first direction, wherein the active gate line vertically overlaps the first active region and the dummy region and does not vertically overlap the second active region.
Abstract:
Provided is an integrated circuit including at least one cell, the at least one cell includes first and second active regions spaced apart from each other, a dummy region disposed between the first and second active regions, at least one first active fin disposed in the first active region and extending in a first direction, at least one second active fin extending along the first direction over the entire length of the second active region, and an active gate line extending in a second direction that is substantially perpendicular to the first direction, wherein the active gate line vertically overlaps the first active region and the dummy region and does not vertically overlap the second active region.
Abstract:
Provided is a semiconductor device including a substrate with a plurality of logic cells, transistors provided in the plurality of logic cells, contact plugs connected to electrodes of the transistors, first via plugs in contact with top surfaces of the contact plugs, and first wires in contact with top surfaces of the first via plugs. The first wires may include a common conductive line connected to the plurality of logic cells through the contact plugs, and all of the first wires may be shaped like a straight line extending parallel to a specific direction.
Abstract:
Semiconductor devices and methods of forming the same are provided. The semiconductor devices may include a finFET, a metal routing layer, a first local interconnect layer, and a second local interconnect layer. The finFET may include a channel, a first source/drain region, a second source/drain region, and a gate stack. The metal routing layer may be separated from the finFET in a vertical direction. The first local interconnect layer may include a first local interconnect that contacts a first metal route in the metal routing layer and that electrically connects to the first source/drain region. The second local interconnect layer may include a second local interconnect that contacts a second metal route in the metal routing layer and that electrically connects to the gate stack.
Abstract:
A semiconductor device, and a method of manufacturing the same, includes first and second gate structures extending in a first direction and spaced apart from each other in a second direction intersecting the first direction, a dummy gate structure provided between the first and second gate structures, a first source/drain region between the first gate structure and the dummy gate structure, a second source/drain region between the second gate structure and the dummy gate structure, a connection contact provided on the dummy gate structure, and a common conductive line provided on the connection contact. The dummy gate structure extends in the first direction. The connection contact extends in the second direction to connect the first source/drain region to the second source/drain region. The common conductive line configured to a voltage to the first and second source/drain regions through the connection contact.
Abstract:
A semiconductor device includes a substrate including PMOSFET and NMOSFET regions. First and second gate electrodes are provided on the PMOSFET region, and third and fourth gate electrodes are provided on the NMOSFET region. A connection contact is provided to connect the second gate electrode with the third gate electrode, and a connection line is provided on the connection contact to cross the connection contact and connect the first gate electrode to the fourth gate electrode.
Abstract:
A semiconductor device including a substrate; first to third active patterns on an upper portion of the substrate, the active patterns being sequentially arranged in a first direction and extending in a second direction crossing the first direction; first to third power rails respectively connected to the first to third active patterns, wherein a width of the second active pattern in the first direction is at least two times a width of the first active pattern in the first direction and is at least two times a width of the third active pattern in the first direction, the first active pattern is not vertically overlapped with the first power rail, the second active pattern is vertically overlapped with the second power rail, and the third active pattern is not vertically overlapped with the third power rail.
Abstract:
Provided is an integrated circuit including at least one cell, the at least one cell includes first and second active regions spaced apart from each other, a dummy region disposed between the first and second active regions, at least one first active fin disposed in the first active region and extending in a first direction, at least one second active fin extending along the first direction over the entire length of the second active region, and an active gate line extending in a second direction that is substantially perpendicular to the first direction, wherein the active gate line vertically overlaps the first active region and the dummy region and does not vertically overlap the second active region.