-
公开(公告)号:CN117634019A
公开(公告)日:2024-03-01
申请号:CN202311485816.3
申请日:2023-11-09
Applicant: 中国直升机设计研究所
IPC: G06F30/15 , G06F30/23 , G06F119/14
Abstract: 本发明属直升机旋翼设计领域,涉及一种大变形桨叶结构建模方法。本发明把桨叶分成若干直梁段,在每个桨叶直梁段的左端点建立一个浮动坐标系,通过浮动坐标系的3个平动自由度和3个转动自由度,分别描述桨叶直梁段的大范围刚体运动和任意角度转动,桨叶直梁段的弹性变形则相对于浮动坐标系来描述,通过悬臂式对接约束方程进行连接变形协调,从而把桨叶梁结构大变形运动,分解为浮动坐标系的大范围刚体运动或相对于浮动坐标系的中小弹性变形的叠加,最终实现桨叶结构大变形的精确描述。本发明可以提高桨叶大变形状态下结构模型计算精度;另一方面,在统一的多体动力学框架下,一并解决了前突后掠等先进几何构型桨叶的建模问题。
-
公开(公告)号:CN110844064B
公开(公告)日:2023-03-24
申请号:CN201910960828.4
申请日:2019-10-10
Applicant: 中国直升机设计研究所
IPC: B64C27/467
Abstract: 本发明属于直升机旋翼桨叶设计,具体涉及一种适用于低雷诺数的旋翼桨叶气动布局方案。本发明低雷诺数旋翼桨叶由桨根、桨叶内侧、桨尖三部分组成,其中,桨叶弦长最大处位于桨叶内侧,且桨叶上方前缘距变距轴线的距离小于桨叶后缘距变距轴线的距离,且桨叶内侧弦长最大处临近桨根,而远离桨尖。本发明低雷诺数旋翼桨叶通过对桨叶结构、形状,特别是其几何外形及参数进行优化设计,从而提高提高其气动性能,以某全机20kg电动四旋翼无人机为例,采用本发明桨叶其悬停时间超过常规四旋翼时间的1倍,有效载荷重量超过常规旋翼载荷重量,因此极大的提高了旋翼飞行器的飞行性能,具有较大的实际应用价值。
-
公开(公告)号:CN114103681A
公开(公告)日:2022-03-01
申请号:CN202111376173.X
申请日:2021-11-19
Applicant: 中国直升机设计研究所
Abstract: 本发明提供了一种垂直起降无人机自主充电系统,包括:机载设备,设置在无人机上,用于辅助无人机降落在地面充电站上自主充电;地面充电站,用于为无人机充电;机载设备包括:图像采集部件,设置在无人机上,用于辅助无人机降落在地面充电站上;弹簧针,设置在无人机的起落架中部;地面充电站包括:降落平台,用于降落无人机;供电片,设置在降落平台上,用于为无人机充电;视觉识别图标,设置在降落平台上,且设置在供电片之间。本发明不需额外的机械结构对无人机进行定位,对无人机着陆精度要求低,削弱地效设计,提高降落精度;仅有两片充电板,结构简单、可靠,充电电流大、充电速度快。
-
公开(公告)号:CN119577941A
公开(公告)日:2025-03-07
申请号:CN202411440791.X
申请日:2024-10-16
Applicant: 中国直升机设计研究所
IPC: G06F30/15 , G06F30/23 , B64F5/00 , G06F119/14
Abstract: 本申请提供了一种摆振变距耦合旋翼瞬态动力学特性分析方法,所述方法包括:构造旋翼瞬态控制方程;基于所述旋翼瞬态控制方程,计算得到该时刻的旋翼动力学方程;迭代求解该时刻的旋翼动力学方程,得到气弹响应收敛结果;基于该时刻的气弹响应收敛结果,得到该时刻的桨榖载荷;根据该时刻的桨榖载荷与气弹响应收敛结果,更新下一时刻的旋翼操纵、转速和流场信息,直到完成整个计算过程,得到整个过程摆振变距耦合旋翼瞬态动力学特性结果;同时,本申请还提供了一种摆振变距耦合旋翼瞬态动力学特性分析装置;本申请能够解决摆振变距耦合旋翼瞬态动力学特性的计算问题。
-
公开(公告)号:CN117592182A
公开(公告)日:2024-02-23
申请号:CN202311504039.2
申请日:2023-11-13
Applicant: 中国直升机设计研究所
IPC: G06F30/15 , B64C27/04 , G06F30/20 , G06F17/12 , G06F17/16 , G06F17/13 , G06F119/14 , G06F111/04 , G06F113/28
Abstract: 本发明公开一种倾转旋翼直升机过渡状态的动力学响应计算方法和装置,包括:拆分倾转旋翼直升机整体结构,形成部件连接拓扑图;对每个部件捆绑对应的部件连体坐标系,采用部件整体运动和部件几何参数叠加得到部件中任一点相对惯性系的运动;根据每个部件中任一点相对惯性系的运动,建立部件运动方程;基于部件连接拓扑图中部件之间的连接关系建立约束方程;方程联立,形成倾转旋翼直升机运动方程,对倾转旋翼直升机运动方程求解,得到倾转旋翼直升机在过渡状态时的动力学响应。本发明的技术方案解决了针对倾转旋翼直升机的现有的动力学响应计算方式,对每个倾转角度分别建立方程进行计算,从而导致计算工作量较大且与真实运动情况不符的问题。
-
公开(公告)号:CN117574533A
公开(公告)日:2024-02-20
申请号:CN202311483817.4
申请日:2023-11-09
Applicant: 中国直升机设计研究所
IPC: G06F30/15 , B64F5/00 , G06F30/17 , G06F119/14
Abstract: 本发明属于直升机气动设计技术领域,涉及一种新型桨尖旋翼悬停状态拉杆气动静载评估方法。本发明通过确定旋翼拉力T、旋翼旋转角速度、旋翼半径;计算旋翼拉力系数CT;据旋翼拉力系数CT,计算旋翼桨叶平均升力系数,据平均升力系数,确定剖面翼型的俯仰力矩系数,计算气动铰链力矩翼型贡献项;计算气动铰链力矩升力偏置贡献项;计算桨叶的静态气动铰链力矩;最好计算变距拉杆载荷。利用本发明的计算方法针对悬停状态新型桨尖旋翼拉杆气动静载荷进行评估,该结果与风洞试验结果以及基于高精度CFD方法的计算结果相比,吻合程度较好,表明本发明提出的方法能有效计算拉杆静载荷中的气动项。
-
公开(公告)号:CN115892460A
公开(公告)日:2023-04-04
申请号:CN202211442586.8
申请日:2022-11-17
Applicant: 中国直升机设计研究所 , 江西神州六合直升机有限责任公司
Abstract: 本发明涉及飞行器结构设计技术领域,公开了一种分布式多旋翼倾转机翼飞行器及飞行控制方法;所述分布式多旋翼倾转机翼飞行器包括机身、前机翼、后机翼、垂直尾翼、至少8套动力系统、2套倾转机构和襟/副翼;本发明通过倾转机翼机构控制飞行器的飞行模式,包括多旋翼垂直模式、固定翼高速巡航模式、倾转过渡任务模式,实现飞行器长航程、大前飞速度、高有效载荷的性能提升;通过分布式的旋翼和固定翼模式下的控制面融合设计,完成不同模式下的控制切换,实现不同模式下的控制最佳配置;采用分布式动力系统,拥有极高的动力冗余,在部分动力失效或控制面卡制、破损等情况下仍可安全执行任务,有利于个体飞行器的生存及性能提升。
-
公开(公告)号:CN115758940A
公开(公告)日:2023-03-07
申请号:CN202211496511.8
申请日:2022-11-27
Applicant: 中国直升机设计研究所
IPC: G06F30/28 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明属于飞行动力学与计算流体学技术领域,公开了一种适用于倾转旋翼飞行器着舰飞行特性分析方法,首先基于分离涡方法获取非定常的舰艉流场数据,然后确定非定常艉流场对倾转旋翼飞行器的各气动部件入流的时均影响,再分别确定各气动部件的气动载荷,综合计算在旋翼/舰船尾流干扰下的各气动部件的气动载荷,最后建立耦合非定常舰艉流下的倾转旋翼飞行器的飞行动力学模型。本发明采用离散桨叶模型建立了适用于耦合非定常舰艉流场的倾转旋翼飞行器飞行动力学模型,能够比较准确的模拟舰船大尺度涡结构对旋翼/机翼的非定常干扰,计算结果与飞行员实际飞行经验相符,相较于海上试验试飞,本发明能够显著缩短试验周期、节省人力物力、降低风险。
-
公开(公告)号:CN114169068A
公开(公告)日:2022-03-11
申请号:CN202111398816.0
申请日:2021-11-23
Applicant: 中国直升机设计研究所
IPC: G06F30/15 , G06F30/23 , G06F30/28 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明公开一种适用于共轴刚性旋翼直升机的着舰飞行特性分析方法,包括:步骤1,采用高精度分离涡方式获得高置信度的非定常舰艉流场数据;步骤2,根据非定常舰艉流场数据,构建用于耦合非定常舰艉流场数据的共轴刚性旋翼直升机的飞行动力学模型;步骤3,将非定常舰艉流场数据耦合到共轴刚性旋翼直升机的飞行动力学模型中,计算出共轴刚性旋翼直升机的操纵余量和飞行员工作载荷。本发明提供的技术方案解决了现有直升机着舰飞行特性的分析方案中,在共轴刚性旋翼直升机着舰飞行特性研究方面存在空白,以及现有常规共轴直升机着舰飞行特性的分析精度较低的问题。
-
公开(公告)号:CN113928540A
公开(公告)日:2022-01-14
申请号:CN202111391773.3
申请日:2021-11-19
Applicant: 中国直升机设计研究所
Abstract: 本发明提供了一种直升机惯量变距旋翼,包括:马达,设置在直升机的顶部;中央桨毂,与所述马达的转子连接;变距齿轮组,与所述中央桨毂连接;相位传感器,设置在所述马达的底部,用于检测桨叶的相位;转速控制器,与所述马达连接,用于控制所述马达的转速;本发明通过本惯量变距旋翼结构,可简单便捷的实现周期变距控制,大幅降低周期变距技术的难度,降低直升机使用与维护的难度,利于直升机的普及应用。
-
-
-
-
-
-
-
-
-