一种基于FPGA+CPU架构的主动控制旋翼实时控制系统

    公开(公告)号:CN112162509A

    公开(公告)日:2021-01-01

    申请号:CN202011021482.0

    申请日:2020-09-25

    Abstract: 本发明属于旋翼控制技术领域,公开了一种基于FPGA+CPU架构的主动控制旋翼实时控制系统,包括:控制主机、处理器板卡、带FPGA模块的I/O板卡和背板总线;控制主机与处理器板卡连接;控制主机用于监控控制系统与操纵控制系统;处理器板卡上设有外层控制模块和中间层控制模块外层控制模块用于任务控制;中间层控制模块用于各个旋翼桨叶驱动器的动态误差补偿的一致性控制;处理器板卡通过背板总线与带FPGA模块的I/O板卡连接;带FPGA模块的I/O板卡用于信号采集、时钟同步、硬件触发信号处理,带FPGA模块的I/O板卡上还设有内层控制模块;内层控制模块用于旋翼桨叶驱动器的稳态误差补偿控制。

    一种旋翼桨叶内部驱动器的固定装置

    公开(公告)号:CN109533291B

    公开(公告)日:2020-11-03

    申请号:CN201811361761.4

    申请日:2018-11-15

    Abstract: 本申请提供了一种旋翼桨叶内部驱动器的固定装置,属于直升机桨叶设计技术领域。包括前缘、后缘、横梁以及螺栓,其中,所述横梁连接所述前缘与后缘,并且所述横梁的横截面积小于所述前缘或后缘的横截面积,所述前缘在向所述横梁过渡处设置有倒角,所述后缘的另一端连接所述螺栓。本发明无需修改桨叶加工用的模具,金属件的加工工艺简单,同时,未破坏桨叶的气动外形,前缘大梁带裁剪的面积小,对桨叶内部设计和强度设计以及桨叶的动特性影响小,最大限度的满足了压电作动器固定端的固支边界条件要求。

    一种压电驱动器预应力的施加方法

    公开(公告)号:CN109286335B

    公开(公告)日:2020-02-21

    申请号:CN201811361708.4

    申请日:2018-11-15

    Abstract: 本发明提供了一种压电驱动器预应力的施加方法,所述压电驱动器包括过压电陶瓷叠堆与放大框,通过压电陶瓷叠堆与放大框之间的过盈装配实现预应力的施加。其中,确定过盈量的步骤包括:步骤1、计算放大框在压电陶瓷叠堆驱动方向的等效刚度;步骤2、确定放大框与压电陶瓷叠堆的变形协调关系;步骤3、计算预应力产生的感应电场;步骤4、确定机电耦合效应下的压电陶瓷叠堆应变;步骤5、回带步骤2,确定过盈量与预应力之间的关系。本发明有效解决了工程中压电驱动器预应力的施加问题,提高了精度。

    一种旋翼系统装试验台耦合固有频率计算方法

    公开(公告)号:CN114084375B

    公开(公告)日:2023-04-28

    申请号:CN202111382046.0

    申请日:2021-11-19

    Abstract: 本发明属于直升机旋翼动力学领域,具体涉及一种旋翼系统装试验台耦合固有频率计算方法。所述方法包括:在试验台坐标系中描述试验台和旋翼桨叶的整体运动,计及试验台运动和桨叶运动的耦合作用;根据所述耦合作用得到桨叶上任意一点的矢径和速度;利用得到的矢径和速度,计算桨叶的应变能和动能;通过实验测试得到试验台的应变能和动能;利用桨叶、试验台的应变能和动能,采用Hamilton’s原理推导得到旋翼/试验台耦合系统的运动学方程;求解所述动力学方程旋翼/试验台耦合系统的固有特性。本发明将试验台结构模态参数与旋翼结构参数进行拼装得到耦合系统动力学方程,分析试验台对旋翼固有频率的影响规律。

    一种作动器的迟滞补偿方法和装置

    公开(公告)号:CN110928180B

    公开(公告)日:2023-03-28

    申请号:CN201911232639.1

    申请日:2019-12-04

    Abstract: 本发明属于作动器控制技术领域,公开了一种作动器的迟滞补偿方法和装置,包括:S1,获取时域控制信号和作动器的实际响应信号,所述时域控制信号为作动器的期望输入信号;S2,获取时域控制信号的频率、幅值和相位,根据时域控制信号的频率、幅值和相位,以及作动器的实际响应信号采用频域误差补偿对作动器的实际响应信号进行逐频率迟滞补偿,得到频域补偿后的控制信号,解决工程中作动器响应总是滞后于控制输入期望信号的问题。

    一种旋翼系统装试验台耦合固有频率计算方法

    公开(公告)号:CN114084375A

    公开(公告)日:2022-02-25

    申请号:CN202111382046.0

    申请日:2021-11-19

    Abstract: 本发明属于直升机旋翼动力学领域,具体涉及一种旋翼系统装试验台耦合固有频率计算方法。所述方法包括:在试验台坐标系中描述试验台和旋翼桨叶的整体运动,计及试验台运动和桨叶运动的耦合作用;根据所述耦合作用得到桨叶上任意一点的矢径和速度;利用得到的矢径和速度,计算桨叶的应变能和动能;通过实验测试得到试验台的应变能和动能;利用桨叶、试验台的应变能和动能,采用Hamilton’s原理推导得到旋翼/试验台耦合系统的运动学方程;求解所述动力学方程旋翼/试验台耦合系统的固有特性。本发明将试验台结构模态参数与旋翼结构参数进行拼装得到耦合系统动力学方程,分析试验台对旋翼固有频率的影响规律。

    一种直升机桨叶内埋盒形装置及其成型方法

    公开(公告)号:CN110815899A

    公开(公告)日:2020-02-21

    申请号:CN201910960648.6

    申请日:2019-10-10

    Abstract: 本发明属于直升机桨叶制造技术,具体涉及一种直升机桨叶内埋盒形装置及其成型方法。本发明直升机桨叶内埋盒形装置包括上框、中框、下框、水平向螺座、垂直向螺座。本发明直升机桨叶内埋盒形装置的成型方法,使用复合材料预浸料对上框、中框及下框进行固化预成型,然后用胶接方式成型固化成为盒形结构,利用机械加工方式加工出水平向螺座和垂直向螺座,在中框上开孔,并在中框孔中安装水平向螺座,将垂直向螺座胶接在盒形结构内壁,然后进行固化成型。本发明既实现了盒形装置轻质化,又满足了盒形装置强度、刚度要求,同时实现了盒形装置内埋在桨叶内维形的功能,具有较大的实际应用价值。

    一种旋翼桨叶内部驱动器的固定装置

    公开(公告)号:CN109533291A

    公开(公告)日:2019-03-29

    申请号:CN201811361761.4

    申请日:2018-11-15

    Abstract: 本申请提供了一种旋翼桨叶内部驱动器的固定装置,属于直升机桨叶设计技术领域。包括前缘、后缘、横梁以及螺栓,其中,所述横梁连接所述前缘与后缘,并且所述横梁的横截面积小于所述前缘或后缘的横截面积,所述前缘在向所述横梁过渡处设置有倒角,所述后缘的另一端连接所述螺栓。本发明无需修改桨叶加工用的模具,金属件的加工工艺简单,同时,未破坏桨叶的气动外形,前缘大梁带裁剪的面积小,对桨叶内部设计和强度设计以及桨叶的动特性影响小,最大限度的满足了压电作动器固定端的固支边界条件要求。

Patent Agency Ranking