摘要:
Methods and systems for identifying and/or quantifying polypeptide binding interactions of ligand-binding polypeptides are disclosed. Detailed methods include methods for identifying binding ligands of ligand-binding polypeptides and methods for assessing changes in binding behavior due to alterations of ligand-binding polypeptides. Detailed systems include array-based systems that permit detection of ligand binding interactions at single-analyte resolution.
摘要:
Provided are a microarray substrate comprising a solid substrate coated with a chemical having a functional residue represented by Formula 1 or 2 below, a method of analyzing a biomolecule using the microarray substrate, and a lab-on-a-chip comprising the microarray substrate: wherein n, the structure within brackets [ ], R1, R2, R3, R10, n and l are as defined in the specification.
摘要:
The present invention relates among others to a method of pooling samples to be analyzed for a categorical variable, wherein the analysis involves a quantitative measurement of an analyte, said method of pooling samples comprising providing a pool of n samples wherein the amount of individual samples in the pool is such that the analytes in the samples are present in a molar ratio of x0:x1:x2:x(n−1), and wherein x is equal to a positive value other than 1 representing the pooling factor.
摘要:
A portable, fully-automated, microchip including a DNA purification region fluidly integrated with a PCR-based detection region is used to detect specific DNA sequences for the rapid detection of bacterial pathogens. Using an automated detection system with integrated microprocessor, pumps, valves, thermocycler and fluorescence detection modules, the microchip is able to purify and detect bacterial DNA by real-time PCR amplification using fluorescent dye. The fully automated detection system is completely portable, making the system ideal for the detection of bacterial pathogens in the field or other point-of-care environments.
摘要:
A high-throughput combinatorial materials experimental apparatus for in-situ synthesis and real-time characterization includes a composition spread device to prepare continuous or discrete composition distribution as precursor of the high-throughput experimental samples library, a low temperature diffusion mixing device to thoroughly mix the composition spread in the thickness direction through diffusion at a relatively low temperature to form an amorphous precursor, and an integrated synthesis-characterization unit for heat treatment of the material library precursor in either a parallel or point-by-point scanning mode at different thermodynamic conditions for phase formation and to characterize features or properties of the materials of interest in an in-situ and real-time manner. The integrated synthesis-characterization unit includes a chamber maintained at desired vacuum and atmosphere, a micro-heating source, an excitation source, a signal collector, and a sample holder.
摘要:
The disclosed embodiments concern microfluidic cartridges for detecting biological reactions. In some embodiments, the microfluidic cartridges are configured to perform sequencing operations on a nucleic acid sample. In one aspect, a microfluidic cartridge includes a stack of fluidics layers defining channels and valves for processing the nucleic acid sample to be sequenced, and a solid state CMOS biosensor integrated in the stack. The biosensor has an active area configured to detect signals of biological reactions, wherein substantially all of the active area is available for reagent delivery and illumination during operation. In another aspect, a microfluidic cartridge includes: (a) a flow cell including a reaction site area encompassing one or more reaction sites; (b) fluidics channels for delivering reactants to and/or removing reactants from the reaction site area; (c) a biosensor having an active area configured to detect signals of biological reactions in the reaction site area. The reaction site area is proximal to the active area of the biosensor and the reaction site area spans substantially all of the active area of the biosensor. In some embodiments, the fluidics channels do not substantially overlap with the active area of the biosensor. Methods for manufacturing and operating the microfluidic cartridges are also disclosed.
摘要:
A novel encoding system, compositions for use therein and methods for determining the source, location and/or identity of a particular item or component of interest is provided. In particular, the present invention utilizes a collection of one or more sizes of populations of semiconductor nanocrystals having characteristic spectral emissions, to “track” the source or location of an item of interest or to identify a particular item of interest. The semiconductor nanocrystals used in the inventive compositions can be selected to emit a desired wavelength to produce a characteristic spectral emission in narrow spectral widths, and with a symmetric, nearly Gaussian line shape, by changing the composition and size of the semiconductor nanocrystal. Additionally, the intensity of the emission at a particular characteristic wavelength can also be varied, thus enabling the use of binary or higher order encoding schemes.
摘要:
A method and device for digital multiplex PCR assays employ a microfluidic chip for performing real-time, continuous flow PCR within microchannels of the chip. A stream of sample material is introduced into each microchannel and alternating boluses of assay-specific reagents and buffer are introduced into the stream to form sequentially configured test boluses. A PCR procedure is performed on the test boluses followed by a thermal melt procedure. During the thermal melt procedure, fluorescent output is detected and fluorescence vs temperature data is collected and compared to expected normal correlations. The results, positive or negative, are converted to digital format, with positive results designated as “1” and negative results designated as “0”, or vice versa.
摘要:
Present disclosure provides a method including isolating DNA from a source, thereby providing a composition including the isolated DNA. The isolated DNA has at least first and second target regions, where the length of the second target region is greater than the length of the first target region. The method further includes quantifying a total mass of the isolated DNA, quantifying a first quantification cycle (Cq) of the first target region and a second Cq of the second target region, and calculating a Q-ratio for the isolated DNA by dividing the second Cq by the first Cq. The method further includes determining a value for a quality-mass constant (kQm), estimating a required input mass by dividing kQm by the Q-ratio, and preparing the isolated DNA for sequencing if the total mass of the isolated DNA in the composition is equal or greater than the required input mass.