Abstract:
A method for fabricating a substrate structure is provided, which includes the steps of: disposing at least a strengthening member on a carrier; sequentially forming a first circuit layer and a dielectric layer on the carrier, wherein the strengthening member is embedded in the dielectric layer; forming a second circuit layer on the dielectric layer; removing the carrier; and forming an insulating layer on the first circuit layer and the second circuit layer. The strengthening member facilitates to reduce thermal warping of the substrate structure.
Abstract:
A method for fabricating a substrate structure is provided, which includes the steps of: disposing at least a strengthening member on a carrier; sequentially forming a first circuit layer and a dielectric layer on the carrier, wherein the strengthening member is embedded in the dielectric layer; forming a second circuit layer on the dielectric layer; removing the carrier; and forming an insulating layer on the first circuit layer and the second circuit layer. The strengthening member facilitates to reduce thermal warping of the substrate structure.
Abstract:
According to the invention, there are provided a conductive film which has a mesh-like metal layer composed of metal thin wires and in which visual recognition of the metal thin wires is suppressed and the metal layer has excellent conductive characteristics, a touch panel sensor, and a touch panel. A conductive film according to the invention includes a substrate; a patterned to-be-plated layer which is disposed on the substrate in a mesh pattern and has a functional group interacting with a plating catalyst or a precursor thereof; and a mesh-like metal layer which is disposed on the patterned to-be-plated layer and has a plurality of metal thin wires intersecting each other, an average thickness of the patterned to-be-plated layer is 0.05 to 100 μm, an average thickness of the metal layer is 0.05 to 0.5 μm, and an average intersection growing rate at an intersection of metal thin wires of the mesh of the metal layer is 1.6 or less.
Abstract:
A three-dimensional structure in which a wiring is provided on a surface is provided. At least a part of the surface of the three-dimensional structure includes an insulating layer containing filler. A recessed gutter for wiring is provided on the surface of the three-dimensional structure, and at least a part of a wiring conductor is embedded in the recessed gutter for wiring.
Abstract:
Methods and devices for patterning electroless metals on a substrate are presented. An active catalyst layer on the substrate can be covered with a patterned mask and treated with a deactivating chemical reagent, which deactivates the catalyst layer not covered by the mask. Once the patterned mask is removed, the electroless metal layer can be placed to have a patterned electroless metals. Alternatively, a substrate can be coated with a blocking reagent in a pattern first to inhibit formation of the catalyst layer before a catalyst layer can be placed over the blocking agent layer and then electroless metal layer is placed on the catalyst layer. The pattern of the blocking reagent acts as a negative pattern of the final conductive line pattern.
Abstract:
The photosensitive resin composition of the present invention contains a vinyl-based (co)polymer (I) obtained by polymerizing a monomer mixture (α) containing a vinyl-based monomer (a) having a phenolic hydroxyl group, a vinyl-based copolymer (II) having a weight-average molecular weight of 15,000 to 120,000, obtained by polymerizing a monomer mixture (β) containing a vinyl-based monomer (b) represented by CH2═CR1COO(R2O)kR3 (wherein R1=a hydrogen atom or a methyl group, R2=a hydrocarbon group having a carbon number of 1 to 4, R3=a hydrogen atom or a methyl group, and k=1 to 90) and a carboxyl group-containing vinyl-based monomer (c), a photosensitive substance (III), and a compound (IV) which is a specific aromatic polyhydroxy compound.
Abstract:
A photosensitive resin composition includes a binder polymer, a photopolymerizable compound, and a photopolymerization initiator. The binder polymer has a structural unit derived from a (meth)acrylic acid, a structural unit derived from styrene or α-methylstyrene, and a structural unit derived from a hydroxyalkyl (meth)acrylate ester having a hydroxyalkyl group having from 1 to 12 carbon atoms. The photopolymerizable compound include a bisphenolic di(meth)acrylate having from 1 to 20 structural units of an ethyleneoxy group and having from 0 to 7 structural units of a propyleneoxy group.
Abstract:
The present invention relates to a method of producing a multilayer circuit board including: a film-forming step of forming a swellable resin film on the surface of an insulative substrate, a circuit groove-forming step of forming circuit grooves having a depth equal to or greater than the thickness of the swellable resin film on the external surface of the film, a catalyst-depositing step of depositing a plating catalyst or the precursor thereof on the surface of the circuit grooves and the surface of the swellable resin film, a film-separating step of swelling the swellable resin film with a particular liquid and then separating the swollen resin film from the insulative substrate surface, and a plating processing step of forming an electrolessly plated film only in the region where the plating catalyst or the plating catalyst formed from the plating catalyst precursor remains unseparated after separation of the film.
Abstract:
One aspect of the present invention is a three-dimensional structure in which a wiring is formed on a surface, the three-dimensional structure having an insulating resin layer that contains a filler formed from at least one element selected from typical non-metal elements and typical metal elements, wherein a recessed gutter for wiring is formed on a surface of the insulating resin layer, and at least a part of a wiring conductor is embedded in the recessed gutter for wiring.
Abstract:
A method for manufacturing a switching element which has enough resistance to repeat switching operations and which can be miniaturized and have low power consumption, and a display device including the switching element are provided. The switching element includes a first electrode to which a constant potential is applied, a second electrode adjacent to the first electrode, and a third electrode over the first electrode with a spacer layer formed of a piezoelectric material interposed therebetween and provided across the second electrode such that there is a gap between the second electrode and the third electrode. A potential which is different from or approximately the same as a potential of the first electrode is applied to the third electrode to expand and contract the spacer layer, so that a contact state or a noncontact state between the second electrode and the third electrode can be selected.