Abstract:
Methods and devices for patterning electroless metals on a substrate are presented. An active catalyst layer on the substrate can be covered with a patterned mask and treated with a deactivating chemical reagent, which deactivates the catalyst layer not covered by the mask. Once the patterned mask is removed, the electroless metal layer can be placed to have a patterned electroless metals. Alternatively, a substrate can be coated with a blocking reagent in a pattern first to inhibit formation of the catalyst layer before a catalyst layer can be placed over the blocking agent layer and then electroless metal layer is placed on the catalyst layer. The pattern of the blocking reagent acts as a negative pattern of the final conductive line pattern.
Abstract:
A circuit board includes an electric circuit having a wiring section and a pad section in the surface of an insulating base substrate. The electric circuit is configured such that a conductor is embedded in a circuit recess formed in the surface of the insulating base substrate, and the surface roughness of the conductor is different in the wiring section and the pad section of the electric circuit. In this case, it is preferable that the surface roughness of the conductor in the pad section is greater than the surface roughness of the conductor in the wiring section.
Abstract:
One aspect of the present invention relates to a circuit board including an insulating base substrate; and a circuit layer that is formed of a conductor and that is provided on the surface of the insulating base substrate, wherein the insulating base substrate has a smooth surface having a surface roughness Ra of 0.5 μm or less, and the conductor is at least partially embedded in a wiring groove formed in the surface of the insulating base substrate.
Abstract:
The present invention relates to a method of producing a multilayer circuit board including: a film-forming step of forming a swellable resin film on the surface of an insulative substrate, a circuit groove-forming step of forming circuit grooves having a depth equal to or greater than the thickness of the swellable resin film on the external surface of the film, a catalyst-depositing step of depositing a plating catalyst or the precursor thereof on the surface of the circuit grooves and the surface of the swellable resin film, a film-separating step of swelling the swellable resin film with a particular liquid and then separating the swollen resin film from the insulative substrate surface, and a plating processing step of forming an electrolessly plated film only in the region where the plating catalyst or the plating catalyst formed from the plating catalyst precursor remains unseparated after separation of the film.
Abstract:
An object of an aspect of the present invention is to provide a method of producing a circuit board that allows highly accurate preservation of the circuit profile and gives a circuit having a desired depth in preparation of a fine circuit by additive process.The method of producing a multilayer circuit board in an aspect of the present invention includes a film-forming step of forming a swellable resin film on the surface of an insulative substrate, a circuit groove-forming step of forming circuit grooves having a depth equal to or greater than the thickness of the swellable resin film on the external surface of the swellable resin film, a catalyst-depositing step of depositing a plating catalyst or the precursor thereof on the surface of the circuit grooves and the surface of the swellable resin film, a film-separating step of swelling the swellable resin film with a particular liquid and then separating the swollen resin film from the insulative substrate surface, and a plating processing step of forming an electrolessly plated film only in the region where the plating catalyst or the plating catalyst formed from the plating catalyst precursor remains unseparated after separation of the swellable resin film.
Abstract:
An object of an aspect of the present invention is to provide a method of producing a circuit board that allows highly accurate preservation of the circuit profile and gives a circuit having a desired depth in preparation of a fine circuit by additive process.The method of producing a multilayer circuit board in an aspect of the present invention includes a film-forming step of forming a swellable resin film on the surface of an insulative substrate, a circuit groove-forming step of forming circuit grooves having a depth equal to or greater than the thickness of the swellable resin film on the external surface of the swellable resin film, a catalyst-depositing step of depositing a plating catalyst or the precursor thereof on the surface of the circuit grooves and the surface of the swellable resin film, a film-separating step of swelling the swellable resin film with a particular liquid and then separating the swollen resin film from the insulative substrate surface, and a plating processing step of forming an electrolessly plated film only in the region where the plating catalyst or the plating catalyst formed from the plating catalyst precursor remains unseparated after separation of the swellable resin film.
Abstract:
A method for manufacturing a wiring substrate by an electroless plating method that precipitates metal without using a plating resist is provided. The method includes the steps of: (a) providing a catalyst layer having a predetermined pattern on a substrate; (b) dipping the substrate in an electroless plating solution to thereby precipitate metal on the catalyst layer to provide a first metal layer; (c) exposing a top surface of the substrate to steam; and (d) dipping the substrate in an electroless plating solution to thereby precipitate metal on the first metal layer to provide a second metal layer.
Abstract:
The present invention relates to a process for the manufacture of printed circuit boards. The method contemplates a novel processing sequence for this manufacturing process which method is particularly versatile in reducing the number of steps and variety of chemicals currently necessary to produce the circuit boards.
Abstract:
A printed circuit board is formed by forming a negative resist pattern over the surface of a substrate, etching the surface, sensitizing and catalyzing the surface, stripping the negative mask and catalytic layer thereover leaving a positive catalytic circuit pattern on the substrate and electrolessly plating copper over the catalytic image. A preferred variation of this method includes flash plating a thin porous electroless deposit over the catalyzed substrate prior to stripping the resist layer.
Abstract:
THIS INVENTION RELATES TO AN IMPROVEMENT IN T HE METALLIZING OF VARIOUS SURFACES WHEREIN AN ACID RESISTANT BUT ALKALINE REMOVABLE STOP-OFF COATING IS APPLIED TO SELECTED PORTIONS OF THE SURFACE OF AN ARTICLE TO BE PLATED FOR THE PURPOSE OF MASKING PARTICULAR AREAS WHICH ARE TO REMAIN UNPLATED DURING THE PLATING PROCESS. THE STOP-OFF COATING COMPOSITIONS ARE AQUEOUS DISPERSIONS OF VINYL EMULSION COPOLYMERS C ONTAINING AT LEAST ONE CARBXYLIC ACID. THE PROCESS OF THIS INVENTION IS PARTICULARLY APPLICABLE TO A SURFACE FORMED FROM A PLASTIC OR SYNTHETIC POLYMETRIC MATERIAL.