Abstract:
A process and resultant article of manufacture made by such process comprises forming through vias needed to connect a bottom device layer in a bottom silicon wafer to the one in the top device layer in a top silicon wafer comprising a silicon-on-insulator (SOI) wafer. Through vias are disposed in such a way that they extend from the middle of the line (MOL) interconnect of the top wafer to the buried oxide (BOX) layer of the SOI wafer with appropriate insulation provided to isolate them from the SOI device layer.
Abstract:
A method includes placing a plurality of first package components over second package components, which are included in a third package component. First metal connectors in the first package components are aligned to respective second metal connectors of the second package components. After the plurality of first package components is placed, a metal-to-metal bonding is performed to bond the first metal connectors to the second metal connectors.
Abstract:
The bonding apparatus is capable of effectively increasing temperature of a substrate and reducing occurrence of position gaps and poor connection in a process of flip-chip-bonding semiconductor devices to the substrate. The bonding apparatus comprises: a supporting unit for supporting the substrate, on which the semiconductor devices have been adhered by a non-conductive; and a heating/pressing unit for heating and pressing the substrate, the heating/pressing unit having a built-in heat source and a clamping face, onto which the substrate supported by the supporting unit is pressed. The substrate supported by the supporting unit is moved toward the clamping face of the heating/pressing unit so as to preheat the substrate and the semiconductor devices by radiation heat. Then, the semiconductor devices are pressed onto the clamping face of the heating/pressing unit so as to cure the non-conductive adhesive and bond bumps of the semiconductor devices to terminal sections of the substrate.
Abstract:
An apparatus and a method for chip-to-wafer integration is provided. The apparatus includes a coating module, a bonding module and a cleaning module. The method includes the steps of placing at least one chip on a wafer to form an integrated product, forming a film on the integrated product, such that the integrated product is substantially fluid-tight, and exerting a predetermined positive pressure on the film during permanent bonding of the at least one chip to the wafer. The method further includes the step of removing the film from the integrated product after permanent bonding of the at least one chip to the wafer.
Abstract:
A process and resultant article of manufacture made by such process comprises forming through vias needed to connect a bottom device layer in a bottom silicon wafer to the one in the top device layer in a top silicon wafer comprising a silicon-on-insulator (SOI) wafer. Through vias are disposed in such a way that they extend from the middle of the line (MOL) interconnect of the top wafer to the buried oxide (BOX) layer of the SOI wafer with appropriate insulation provided to isolate them from the SOI device layer.
Abstract:
Provided is a method for manufacturing an electronic component by using a solder joining method for bonding a first electronic component having a metal electrode with a second electronic component having a solder electrode, the method comprising; (i) forming a resin layer containing a thermosetting resin on at least one of the solder joint surfaces of said first electronic component and said second electronic component; (ii) positioning said metal electrode of said first electronic component and said solder electrode of said second electronic component to face each other, heating said positioned electrodes and applying pressure, and thereby bringing said metal electrode and said solder electrode into contact; (iii) heating electronic components while applying pressure thereby fusion bonding said solder to said metal electrode; and (iv) heating said resin layer.
Abstract:
A mounting method for bonding a first object having a metal joint part to a second object, comprising the steps of cleaning at least the surface of the metal joint part of the first object by irradiating an energy wave or energy particle beam, and thermally bonding the cleaned metal joint part of the first object to a portion to be bonded of the second object by heating in a special gas atmosphere, and a device thereof. In the mounting, the primary and secondary oxidations of the metal joint part can be efficiently prevented, and thereby highly reliable bonding can be carried out.
Abstract:
The bonding apparatus is capable of effectively increasing temperature of a substrate and reducing occurrence of position gaps and poor connection in a process of flip-chip-bonding semiconductor devices to the substrate. The bonding apparatus comprises: a supporting unit for supporting the substrate, on which the semiconductor devices have been adhered by a non-conductive; and a heating/pressing unit for heating and pressing the substrate, the heating/pressing unit having a built-in heat source and a clamping face, onto which the substrate supported by the supporting unit is pressed. The substrate supported by the supporting unit is moved toward the clamping face of the heating/pressing unit so as to preheat the substrate and the semiconductor devices by radiation heat. Then, the semiconductor devices are pressed onto the clamping face of the heating/pressing unit so as to cure the non-conductive adhesive and bond bumps of the semiconductor devices to terminal sections of the substrate.
Abstract:
Provided is a method for manufacturing an electronic component by using a solder joining method for bonding a first electronic component having a metal electrode with a second electronic component having a solder electrode, the method comprising; (i) forming a resin layer containing a thermosetting resin on at least one of the solder joint surfaces of said first electronic component and said second electronic component; (ii) positioning said metal electrode of said first electronic component and said solder electrode of said second electronic component to face each other, heating said positioned electrodes and applying pressure, and thereby bringing said metal electrode and said solder electrode into contact; (iii) heating electronic components while applying pressure thereby fusion bonding said solder to said metal electrode; and (iv) heating said resin layer.
Abstract:
A process and resultant article of manufacture made by such process comprises forming through vias needed to connect a bottom device layer in a bottom silicon wafer to the one in the top device layer in a top silicon wafer comprising a silicon-on-insulator (SOI) wafer. Through vias are disposed in such a way that they extend from the middle of the line (MOL) interconnect of the top wafer to the buried oxide (BOX) layer of the SOI wafer with appropriate insulation provided to isolate them from the SOI device layer.