摘要:
The present invention related to CNT filled polymer composite system possessing a high thermal conductivity and high temperature stability so that it is a highly thermally conductive for use in 3D and 4D integration for joining device sub-laminate layers. The CNT/polymer composite also has a CTE close to that of Si, enabling a reduced wafer structural warping during high temperature processing cycling. The composition is tailored to be suitable for coating, curing and patterning by means conventionally known in the art.
摘要:
The present invention relates to CNT filled polymer composite system possessing a high thermal conductivity and high temperature stability so that it is a highly thermally conductive for use in 3D and 4D integration for joining device sub-laminate layers. The CNT/polymer composite also has a CTE close to that of Si, enabling a reduced wafer structural warping during high temperature processing cycling. The composition is tailored to be suitable for coating, curing and patterning by means conventionally known in the art.
摘要:
A process and resultant article of manufacture made by such process comprises forming through vias needed to connect a bottom device layer in a bottom silicon wafer to the one in the top device layer in a top silicon wafer comprising a silicon-on-insulator (SOI) wafer. Through vias are disposed in such a way that they extend from the middle of the line (MOL) interconnect of the top wafer to the buried oxide (BOX) layer of the SOI wafer with appropriate insulation provided to isolate them from the SOI device layer.
摘要:
A computer readable medium is provided that is encoded with a program comprising instructions for performing a method for fabricating a 3D integrated circuit structure. Provided are an interface wafer including a first wiring layer and through-silicon vias, and a first active circuitry layer wafer including active circuitry. The first active circuitry layer wafer is bonded to the interface wafer. Then, a first portion of the first active circuitry layer wafer is removed such that a second portion remains attached to the interface wafer. A stack structure including the interface wafer and the second portion of the first active circuitry layer wafer is bonded to a base wafer. Next, the interface wafer is thinned so as to form an interface layer, and metallizations coupled through the through-silicon vias in the interface layer to the first wiring layer are formed on the interface layer.
摘要:
A semiconductor structure is provided and includes a substrate having an edge surface and a device surface with a central area, a crack stop structure disposed on the device surface and a circuit structure including components disposed on the device surface in the central area and interconnects electrically coupled to the components. The interconnects are configured to extend from the central area to the edge surface while bridging over the crack stop structure.
摘要:
A first set of semiconductor substrates includes semiconductor chips having bonding pads arranged in a primary pattern. A second set of semiconductor substrates includes semiconductor chips having bonding pads arranged in a mirror-image pattern. A first semiconductor substrate from the first set is bonded to a second semiconductor substrate from the second set such that each bonding pads is bonded to a mirror-image bonding pad. Additional substrates are bonded sequentially such that the bonded structure includes an even number of semiconductor substrates of which one half have bonding pads of the primary pattern and are bonded to the side of the first semiconductor substrate, while the other half have bonding pads of the mirror-image pattern and are bonded to the side of the second semiconductor substrate. The mirror-image patterns of the bonding pads enable maximal cancellation of wafer bow.
摘要:
An enhanced 3D integration structure comprises a logic microprocessor chip bonded to a collection of vertically stacked memory slices and an optional set of outer vertical slices comprising optoelectronic devices. Such a device enables both high memory content in close proximity to the logic circuits and a high bandwidth for logic to memory communication. Additionally, the provision of optoelectronic devices in the outer slices of the vertical slice stack enables high bandwidth direct communication between logic processor chips on adjacent enhanced 3D modules mounted next to each other or on adjacent packaging substrates. A method to fabricate such structures comprises using a template assembly which enables wafer format processing of vertical slice stacks.
摘要:
An enhanced 3D integration structure comprises a logic microprocessor chip bonded to a collection of vertically stacked memory slices and an optional set of outer vertical slices comprising optoelectronic devices. Such a device enables both high memory content in close proximity to the logic circuits and a high bandwidth for logic to memory communication. Additionally, the provision of optoelectronic devices in the outer slices of the vertical slice stack enables high bandwidth direct communication between logic processor chips on adjacent enhanced 3D modules mounted next to each other or on adjacent packaging substrates. A method to fabricate such structures comprises using a template assembly which enables wafer format processing of vertical slice stacks.
摘要:
A 4D device comprises a 2D multi-core logic and a 3D memory stack connected through the memory stack sidewall using a fine pitch T&J connection. 3D memory in the stack is thinned from the original wafer thickness to no remaining Si. A tongue and groove device at the memory wafer top and bottom surfaces allows an accurate stack alignment. The memory stack also has micro-channels on the backside to allow fluid cooling, and is further diced at the fixed clock-cycle distance, and flipped on its side and re-assembled on to a template into a pseudo-wafer format. The top side wall of the assembly is polished and built with BEOL to fan-out and use the T&J fine pitch connection to join to the 2D logic wafer. The other side of the memory stack is polished, fanned-out, and bumped with C4 solder. The invention also comprises a process for manufacturing the device.
摘要:
A method of forming a semiconductor device includes forming a first interlevel dielectric (ILD) layer over one or more transistor structures formed on a substrate, the one or more transistor structures including an active area, source/drain contact and a gate conductor formed over the substrate; forming a first metal (M1) level trench in an upper portion of the first ILD layer, followed by forming vias in a lower portion of the first ILD layer, down to the source/drain contact and down to the gate conductor; and filling both the trench and vias with a conductive material, thereby resulting in a dual damascene metal process at and below the M1 level of the semiconductor device.