摘要:
A method for fabricating semiconductor device includes the steps of: providing a substrate having a gate structure thereon; forming a silicon layer on the substrate to cover the gate structure entirely; planarizing the silicon layer; and performing a replacement metal gate (RMG) process to transform the gate structure into a metal gate.
摘要:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a gate structure thereon; forming a silicon layer on the substrate to cover the gate structure entirely; planarizing the silicon layer; and performing a replacement metal gate (RMG) process to transform the gate structure into a metal gate.
摘要:
Reducing liner corrosion during metallization of semiconductor devices at BEOL includes providing a starting metallization structure, the structure including a bottom layer of dielectric material with a via therein, a liner lining the via and extending over upper edges thereof, the lined via over filled with a conductive material, recessing the conductive material down to the liner, further selectively recessing the conductive material below the upper edges of the via without damaging the liner, and forming a cap of the liner material on the conductive material.
摘要:
A multilevel interconnect structure in a semiconductor device and methods for fabricating the same are described. The multilevel interconnect structure in the semiconductor device includes a first insulating layer formed on a semiconductor wafer, a Cu interconnect layer formed on the first insulating layer, a second insulating layer formed on the Cu interconnect layer, and a metal oxide layer formed at an interface between the Cu interconnect layer and the second insulating layer. The metal oxide layer is formed by immersion-plating a metal, such as Sn or Zn, on the Cu interconnect layer and then heat-treating the plated layer in an oxidizing atmosphere.
摘要:
A method for manufacturing a bit line structure includes the following operations. A bit line conductive layer is formed on a surface of a semiconductor substrate, and the bit line conductive layer is partially located in a groove in the surface of the semiconductor substrate. A first protective layer is formed on surfaces of the bit line conductive layer and the semiconductor substrate. A first barrier layer is formed on a surface of the first protective layer. The surface of the first barrier layer is subjected with passivating treatment. A sacrificial layer is formed on the surface of the first barrier layer, and is provided with a filling part filled in the groove. A part, other than the filling part, of the sacrificial layer is cleaned and stripped.
摘要:
Interconnect structures and methods and apparatuses for forming the same are disclosed. In an embodiment, a method includes supplying a process gas to a process chamber; igniting the process gas into a plasma in the process chamber; reducing a pressure of the process chamber to less than 0.3 mTorr; and after reducing the pressure of the process chamber, depositing a conductive layer on a substrate in the process chamber.
摘要:
An interconnect structure for integrated circuits for copper wires in integrated circuits and methods for making the same are provided. Mn, Cr, or V containing layer forms a barrier against copper diffusing out of the wires, thereby protecting the insulator from premature breakdown, and protecting transistors from degradation by copper. The Mn, Cr, or V containing layer also promotes strong adhesion between copper and insulators, thus preserving the mechanical integrity of the devices during manufacture and use, as well as protecting against failure by electromigration of the copper during use of the devices and protecting the copper from corrosion by oxygen or water from its surroundings. In forming such integrated circuits, certain embodiments of the invention provide methods to selectively deposit Mn, Cr, V, or Co on the copper surfaces while reducing or even preventing deposition of Mn, Cr, V, or Co on insulator surfaces. Catalytic deposition of copper using a Mn, Cr, or V containing precursor and an iodine or bromine containing precursor is also provided.
摘要:
A multilevel interconnect structure in a semiconductor device comprises a first insulating layer (2) formed on a semiconductor wafer (1), a Cu interconnect layer (4) formed on the first insulating layer (2), a second insulating layer (6) formed on the Cu interconnect layer (4), and a metal oxide layer (5) formed at an interface between the Cu interconnect layer (4) and the second insulating layer (6). The metal oxide layer (5) is formed by immersion-plating a metal, such as Sn or Zn, on the Cu interconnect layer (4) and then heat-treating the plated layer in an oxidizing atmosphere.
摘要:
In a process for manufacturing a semiconductor integrated circuit device having a MISFET, in order that a shallow junction between the source/drain of the MISFET and a semiconductor substrate may be realized by reducing the number of heat treatment steps, all conductive films to be deposited on the semiconductor substrate are deposited at a temperature of 500.degree. C. or lower at a step after the MISFET has been formed. Moreover, all insulating films to be deposited over the semiconductor substrate are deposited at a temperature of 500.degree. C. or lower at a step after the MISFET has been formed.
摘要:
A surface-mountable component is disclosed. The surface-mountable component may include a substrate having a side surface and a top surface that is perpendicular to the side surface. The component may include an element layer formed on the top surface of the substrate. The element layer may include a thin-film element and a contact pad electrically connected with the thin-film element. The contact pad may extend to the side surface of the substrate. The component may include a terminal that is electrically connected with the contact pad at a connection area. The connection area may be parallel with the top surface of the substrate. The terminal may have a visible edge surface that is approximately aligned with the side surface of the substrate. The visible edge surface may be visible for inspection when the surface-mountable component is mounted to a mounting surface.