摘要:
A device includes a semiconductive substrate, a fin structure, and an isolation material. The fin structure extends from the semiconductive substrate. The isolation material is over the semiconductive substrate and adjacent to the fin structure, wherein the isolation material includes a first metal element, a second metal element, and oxide.
摘要:
An example embodiment of the present disclosure involves a method for semiconductor device fabrication. The method comprises providing a structure that includes a conductive component and an interlayer dielectric (ILD) that includes silicon and surrounds the conductive component, and forming, over the conductive component and the ILD, an etch stop layer (ESL) that includes metal oxide. The ESL includes a first portion in contact with the conductive component and a second portion in contact with the ILD. The method further comprises baking the ESL to transform the metal oxide located in the second portion of the ESL into metal silicon oxide, and selectively etching the ESL so as to remove the first portion of the ESL but not the second portion of the ESL.
摘要:
Semiconductor devices and methods of making semiconductor devices with a barrier layer comprising manganese nitride are described. Also described are semiconductor devices and methods of making same with a barrier layer comprising Mn(N) and, optionally, an adhesion layer.
摘要:
Provided is a method of manufacturing a semiconductor device according to the present invention, a ring-shaped electrode plate 18 with an opening having a diameter smaller than a diameter of a semiconductor wafer W is disposed between a first electrode plate 14 and a second electrode plate 16, the semiconductor wafer W is arranged between the ring-shaped electrode plate 18 and the second electrode plate 16, and a glass film is formed on a glass film forming scheduled surface in a state where a potential lower than a potential V2 of the second electrode plate 16 is applied to the ring-shaped electrode plate 18. According to the method of manufacturing a semiconductor device of the present invention, even when the glass film forming step is performed using the semiconductor wafer where the base insulating film is formed on the glass film forming scheduled surface as the semiconductor wafer, lowering of deposition efficiency of fine glass particles on the outer peripheral portion of the semiconductor wafer can be suppressed and hence, highly reliable semiconductor devices can be manufactured with high productivity.
摘要:
The present disclosure provides a method for forming a field-effect fin transistor (FinFET) structure. The method includes providing a substrate with fin structures; forming a gate structures across the fin structures; and forming ion implantation regions in the fin structures at both sides of the gate structure. The method also includes removing top portions of the fin structures at both sides of the gate structure to form remaining portions of the fin structures; forming a first semiconductor material layer on the remaining portions of the fin structures; and forming a second semiconductor material layer on the first semiconductor material layer, the second semiconductor material being doped with barrier-lowering ions. The method further includes forming a metal layer on the second semiconductor material layer, and performing an annealing process on the metal layer to form a contact-resistance-reducing layer.
摘要:
A field-effect transistor includes a gate electrode, a source electrode and a drain electrode to take out electric current according to an application of a voltage to the gate electrode, a semiconductor layer disposed adjacent to the source electrode and the drain electrode, the semiconductor layer forming a channel between the source electrode and the drain electrode, a first insulating layer as gate insulating film disposed between the semiconductor layer and the gate electrode, and a second insulating layer covering at least a part of a surface of the semiconductor layer, the second insulating layer including an oxide including silicon and alkaline earth metal.
摘要:
At least one method, apparatus and system disclosed herein for forming an integrated circuit having a dual-orientation self aligned via. A first dielectric layer is formed on a semiconductor substrate. At least one first metal feature is formed in a first metal layer. A first cap feature is deposited over the first metal feature. A manganese silicate etch stop layer is formed above the dielectric layer. An etch process is performed for removing for at least removing the first cap feature. A second metal feature is formed in a second metal layer. A dual-orientation self aligned via connecting a portion of the second metal feature to the first metal feature is formed.
摘要:
A semiconductor device of an embodiment includes: an SiC layer; a gate insulating film provided on a surface of the SiC layer, the gate insulating film including an oxide film or an oxynitride film in contact with the surface of the SiC layer, the oxide film or the oxynitride film containing at least one element selected from B, Al, Ga (gallium), In, Sc, Y, La, Mg, Ca, Sr, and Ba, a concentration peak of the element in the gate insulating film being on the SiC side of the gate insulating film, the concentration peak of the element being in the oxide film or the oxynitride film, the gate insulating film having a region with a concentration of the element being not higher than 1×1016 cm−3 on the opposite side to the SiC layer with the concentration peak; and a gate electrode on the gate insulating film.
摘要翻译:实施例的半导体器件包括:SiC层; 设置在所述SiC层的表面上的栅极绝缘膜,所述栅极绝缘膜包括与所述SiC层的表面接触的氧化膜或氧氮化物膜,所述氧化物膜或所述氧氮化物膜含有选自B的至少一种元素 ,Al,Ga(镓),In,Sc,Y,La,Mg,Ca,Sr和Ba中,栅极绝缘膜中元素的浓度峰位于栅极绝缘膜的SiC侧, 所述栅极绝缘膜具有在与具有浓度峰的SiC层相反的一侧的元素浓度不高于1×10 16 cm -3的区域; 以及栅极绝缘膜上的栅电极。
摘要:
Provided is an organic light-emitting display apparatus including a hybrid protective film. The organic light-emitting display apparatus includes a substrate, a display unit disposed on the substrate and including an organic light-emitting device (OLED), and an encapsulation unit encapsulating the display unit and including the hybrid protective film. The hybrid protective film includes an inorganic part layer where carbon is removed, an organic part layer where carbon is contained in a predetermined amount, and a gradient part layer disposed between the inorganic part layer and the organic part layer and increasing an amount of carbon as being more contiguous to the organic part layer.
摘要:
Organometallic complexes and use thereof in thin film deposition, such as CVD and ALD are provided herein. The organometallic complexes are (alkyl-substituted η3-allyl)(carbonyl)metal complexes.