摘要:
A synthetic single crystal diamond that includes nitrogen atoms at a concentration of 50 ppm or more and 1200 ppm or less in terms of number of atoms, wherein an infrared absorption spectrum of the synthetic single crystal diamond has an absorption signal within a wavenumber range of 1460 cm−1 or more and 1470 cm−1 or less.
摘要:
A seed crystal substrate 8 includes a base body 1 and a plurality of rows of stripe-shaped seed crystal layers 3 formed on the base body 1. An upper face 3a of the seed crystal layer 3 is (11-22) plane, a groove 4 is formed between the adjacent seed crystal layers 3, and a longitudinal direction of the groove 4 is a direction in which a c-axis of a crystal forming the seed crystal layer is projected on the upper face. A nitride of a group 13 element is formed on the seed crystal substrate.
摘要:
In the present invention, a crucible formed of SiC as a main component is used as a container for a Si—C solution. A metal element M (M is at least one metal element selected from at least one of a first group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho and Lu, a second group consisting of Ti, V, Cr, Mn, Fe, Co, Ni and Cu and a third group consisting of Al, Ga, Ge, Sn, Pb and Zn) is added to the Si—C solution and the crucible is heated to elute Si and C, which are derived from a main component SiC of the crucible, from a high-temperature surface region of the crucible in contact with the Si—C solution, into the Si—C solution. In this way, precipitation of a SiC polycrystal on a surface of the crucible in contact with the Si—C solution is suppressed.
摘要:
An object of the present invention is to suppress macro step growth in the growth of GaN crystal through a flux method. As a crucible for holding a melt when growing a GaN crystal through the Na flux method, the crucible is made of alumina and produced by plaster mold casting. The crucible is used, in which there are alumina grains abnormally grown on the inner walls thereof, and the maximum grain size of the abnormally grown alumina grains is not less than 10 μm. When such a crucible is selected and used, the macro step growth can be suppressed, thereby improving the GaN crystal quality.
摘要:
A method for growing semiconductor wafers by lateral diffusion liquid phase epitaxy is described. Also provided are a refractory device for practicing the disclosed method and semiconductor wafers prepared by the disclosed method and device. The disclosed method and device allow for significant cost and material waste savings over current semiconductor production technologies.
摘要:
Single crystals of the new semiconducting oxychalcogenide phase were synthesized using a novel crystal growth method. The crystals had low defects and homogeneous composition as characterized by single crystal X-ray diffraction and scanning electron microscopy, respectively. Heat capacity and resistivity measurements were in agreement with the calculated band structure calculations indicating semiconductivity, with a band gap of about 3 eV.
摘要:
The maximum value of peak intensities of cathode luminescence of a wavelength corresponding to a band gap of gallium nitride and in a measured visual field of 0.1 mm×0.1 mm is 140 percent or higher of an average value of the peak intensities of the cathode luminescence, provided that the peak intensities of the cathode luminescence are measured on a surface of the gallium nitride substrate.
摘要:
A method for producing a Group III nitride semiconductor single crystal, includes forming a mask layer on an underlayer, to thereby form a seed crystal in which a portion of the underlayer is covered with the mask layer and in which the remaining portion of the underlayer is not covered with the mask layer, etching the remaining portion, and growing a Group III nitride semiconductor single crystal on the seed crystal.
摘要:
A method of producing an n-type group III nitride single crystal includes putting raw materials that include at least a substance including a group III element, an alkali metal, and boron oxide into a reaction vessel; melting the boron oxide by heating the reaction vessel to a melting point of the boron oxide; forming a mixed melt which includes the group III element, the alkali metal, and the boron oxide, in the reaction vessel by heating the reaction vessel to a crystal growth temperature of a group III nitride; dissolving nitrogen into the mixed melt by bringing a nitrogen-containing gas into contact with the mixed melt; and growing an n-type group III nitride single crystal, which is doped with oxygen as a donor, from the group III element, the nitrogen, and oxygen in the boron oxide that are dissolved in the mixed melt.
摘要:
A method for crystallizing a group IV semiconductor to form group IV semiconductor crystals on a process surface of a workpiece on which a process is performed, includes forming an additive-containing group IV semiconductor film on the process surface of the workpiece by supplying a group IV semiconductor precursor gas serving as a precursor of the group IV semiconductor and an additive gas which lowers a melting point of the group IV semiconductor and which includes an additive whose segregation coefficient is smaller than “1”, liquefying the additive-containing group IV semiconductor film, and solidifying the liquefied additive-containing group IV semiconductor film from the side of the process surface of the workpiece to form the group IV semiconductor crystals.