Abstract:
Provided is a silicon-based molten composition including silicon, carbon, and a metal in which a solubility parameter (Csisol) defined by Equation (1) below is less than −0.37, wherein a SiC single crystal is formed by a solution method: Csisol=A−B+μ1−μ2 Equation (1) in Equation (1) above, A is a first energy (A) of a first evaluation lattice including silicon atoms, a carbon atom, and metal atoms in a silicon crystal lattice including metals and carbons, B is a second energy (B) of a second evaluation lattice including silicon atoms and metal atoms in a silicon crystal lattice including metals, μ1 is a constant of −5.422, and μ2 is a constant of −9.097.
Abstract:
A SiC single crystal comprising no polycrystals, and no cracking other than at the side edges is provided. A method for producing SiC single crystal in which seed crystal held at bottom end face of holding shaft is contacted with Si—C solution having temperature gradient to grow SiC single crystal, wherein the contour of the end face of the holding shaft is smaller than the contour of the top face of the seed crystal, the top face of the seed crystal has center section held in contact with the entire surface of the end face of the holding shaft and outer peripheral section that is not in contact with the end face of the holding shaft, and carbon sheet is disposed on the top face of the seed crystal so as to cover at least the outer peripheral section, among the center section and the outer peripheral section.
Abstract:
Provided is a method for producing a SiC single crystal having a concave growth surface and containing no inclusions, even when conducting large diameter crystal growth. This is achieved by a method for producing a SiC single crystal in which a seed crystal substrate held on a seed crystal holding shaft is contacted with a Si—C solution having a temperature gradient such that the temperature decreases from the interior toward the liquid level, to cause crystal growth of a SiC single crystal, wherein the seed crystal holding shaft has a shaft portion and a seed crystal holding portion at the bottom end of the shaft portion, and the ratio of the diameter D1 of the shaft portion to the diameter D2 of the seed crystal holding portion (D1/D2) is no greater than 0.28.
Abstract:
In the present invention, in producing a SiC single crystal in accordance with a solution method, a crucible containing SiC as a main component and having an oxygen content of 100 ppm or less is used as the crucible to be used as a container for a Si—C solution. In another embodiment, a sintered body containing SiC as a main component and having an oxygen content of 100 ppm or less is placed in the crucible to be used as a container for a Si—C solution. SiC, which is the main component of these, serves as a source for Si and C and allows Si and C to elute into the Si—C solution by heating. Since the oxygen content of SiC is 100 ppm or less, generation of gas in the Si—C solution is suppressed.
Abstract:
In the present invention, a crucible formed of SiC as a main component is used as a container for a Si—C solution. The SiC crucible is heated such that, for example, an isothermal line representing a temperature distribution within the crucible draws an inverted convex shape; and Si and C, which are derived from a main component SiC of the crucible, are eluted from a high-temperature surface region of the crucible in contact with the Si—C solution, into the Si—C solution, thereby suppressing precipitation of a SiC polycrystal on a surface of the crucible in contact with the Si—C solution. To the Si—C solution of this state, a SiC seed crystal is moved down from the upper portion of the crucible closer to the Si—C solution and brought into contact with the Si—C solution to grow a SiC single crystal on the SiC seed crystal.
Abstract:
Growth of single crystals of lead zirconate titanate (PZT) and other perovskites is accomplished by liquid phase epitaxy onto a substrate of suitable structural and lattice parameter match. A solvent and specific growth conditions for stable growth are required to achieve the desired proportions of Zr and Ti.
Abstract:
A method for producing a crystal, according to the present invention, where the lower surface of a seed crystal which is rotatably arranged and made of silicon carbide is brought into contact with a solution of silicon solvent containing carbon in a crucible which is rotatably arranged and the seed crystal is pulled up and a crystal of silicon carbide is grown from the solution on the lower surface of the seed crystal, comprising the steps of bringing the lower surface of the seed crystal into contact with the solution in a contact step, rotating the seed crystal in a seed crystal rotation step, rotating the crucible in a crucible rotation step, and stopping rotation of the crucible, while the seed crystal is rotated in the state in which the lower surface of the seed crystal is in contact with the solution, in a deceleration step.
Abstract:
Provided is a method for producing a SiC single crystal having a concave growth surface and containing no inclusions, even when conducting large diameter crystal growth. This is achieved by a method for producing a SiC single crystal in which a seed crystal substrate held on a seed crystal holding shaft is contacted with a Si—C solution having a temperature gradient such that the temperature decreases from the interior toward the liquid level, to cause crystal growth of a SiC single crystal, wherein the seed crystal holding shaft has a shaft portion and a seed crystal holding portion at the bottom end of the shaft portion, and the ratio of the diameter D1 of the shaft portion to the diameter D2 of the seed crystal holding portion (D1/D2) is no greater than 0.28.
Abstract:
Provided is a method for producing an n-type SiC single crystal, whereby it is possible to grow an n-type SiC single crystal having a low resistivity at a high speed. A method for producing an n-type SiC single crystal by bringing a SiC seed crystal substrate into contact with a Si—C solution having such a temperature gradient that the temperature gradually decreases from the inside toward the surface, thereby achieving the crystal growth of the n-type SiC single crystal. The method involves adding a nitride to a raw material for forming the Si—C solution or to the Si—C solution.
Abstract:
The production apparatus is used in production of single crystals by solution growth techniques. The production apparatus includes a seed shaft, a crucible, and a drive source. The seed shaft has a lower end surface to which a seed crystal is to be attached. The crucible contains a solution from which a single crystal is made. The drive source causes the crucible to rotate, and also varies the rotational speed of the crucible. The inner peripheral surface of the crucible includes a flow control surface which defines a non-circular cross-sectional shape. This single crystal production apparatus is capable of strongly stirring the solution contained in the crucible.