Abstract:
A method for manufacturing a high-voltage semiconductor device includes exposing a semiconductor substrate to a plasma to form a protective substance layer on the semiconductor substrate. A semiconductor device includes a semiconductor substrate and a protective substance layer on the semiconductor substrate.
Abstract:
A semiconductor device includes a contact metallization layer arranged on a semiconductor substrate, an inorganic passivation structure arranged on the semiconductor substrate, and an organic passivation layer. The organic passivation layer is located between the contact metallization layer and the inorganic passivation structure, and located vertically closer to the semiconductor substrate than a part of the organic passivation layer located on top of the inorganic passivation structure.
Abstract:
First reinforcement stripes are formed on a process surface of a base substrate. A first epitaxial layer covering the first reinforcement stripes is formed on the first process surface. Second reinforcement stripes are formed on the first epitaxial layer. A second epitaxial layer covering the second reinforcement stripes is formed on exposed portions of the first epitaxial layer. Semiconducting portions of transistor cells are formed in or portions of micro electromechanical structures are formed from the second epitaxial layer.
Abstract:
A lithium ion battery includes a first substrate having a first main surface, and a lid including an insulating material. The lid is attached to the first main surface of the first substrate, and a cavity is defined between the first substrate and the lid. The lithium ion battery further includes an electrical interconnection element in the lid, the electrical interconnection element providing an electrical connection between a first main surface and a second main surface of the lid. The lithium ion battery further includes an electrolyte in the cavity, an anode at the first substrate, the anode including a component made of a semiconductor material, and a cathode at the lid.
Abstract:
A semiconductor device includes a contact metallization layer arranged on a semiconductor substrate, an inorganic passivation structure arranged on the semiconductor substrate, and an organic passivation layer. The organic passivation layer is located between the contact metallization layer and the inorganic passivation structure, and located vertically closer to the semiconductor substrate than a part of the organic passivation layer located on top of the inorganic passivation structure.
Abstract:
A silicon carbide device includes a silicon carbide substrate, a contact layer including nickel, silicon and aluminum, a barrier layer structure including titanium and tungsten, and a metallization layer including copper. The contact layer is located on the silicon carbide substrate. The contact layer is located between the silicon carbide substrate and at least a part of the barrier layer structure. The barrier layer structure is located between the silicon carbide substrate and the metallization layer.
Abstract:
According to an embodiment of a semiconductor device, the semiconductor devices includes a metal structure electrically connected to a semiconductor body and a metal adhesion and barrier structure between the metal structure and the semiconductor body. The metal adhesion and barrier structure includes a first layer having titanium and tungsten, and a second layer having titanium, tungsten, and nitrogen on the first layer having titanium and tungsten.
Abstract:
A semiconductor device includes a silicon carbide semiconductor body and a metal contact structure. Interface particles including a silicide kernel and a carbon cover on a surface of the silicide kernel are formed directly between the silicon carbide semiconductor body and the metal contact structure. Between neighboring ones of the interface particles, the metal contact structure directly adjoins the silicon carbide semiconductor body.
Abstract:
A lithium ion battery includes a first substrate having a first main surface, and a lid including an insulating material. The lid is attached to the first main surface of the first substrate, and a cavity is defined between the first substrate and the lid. The lithium ion battery further includes an electrical interconnection element in the lid, the electrical interconnection element providing an electrical connection between a first main surface and a second main surface of the lid. The lithium ion battery further includes an electrolyte in the cavity, an anode at the first substrate, the anode including a component made of a semiconductor material, and a cathode at the lid.
Abstract:
A method of fabricating a semiconductor device includes forming a barrier layer over a surface of a semiconductor substrate. A treated barrier layer is formed by subjecting an exposed surface of the barrier layer to a surface treatment process. The surface treatment process includes treating the surface with a reactive material. A material layer is formed over the treated barrier layer. The material layer comprises a metal.