Abstract:
A semiconductor component includes: gate structures extending into a silicon carbide body from a first surface and having a width along a first horizontal direction parallel to the first surface that is less than a vertical extent of the gate structures perpendicular to the first surface; contact structures extending into the silicon carbide body from the first surface, the gate and contact structures alternating along the first horizontal direction; shielding regions which, in the silicon carbide body, adjoin a bottom of the contact structures and are spaced apart from the gate structures along the first horizontal direction; and source regions between the first surface and body regions. The body regions form pn junctions with the source regions and include main sections adjoining the gate structures and contact sections adjoining the contact structures. A vertical extent of the contact structures is greater than the vertical extent of the gate structures.
Abstract:
A semiconductor device includes a contact metallization layer arranged on a semiconductor substrate, an inorganic passivation structure arranged on the semiconductor substrate, and an organic passivation layer. The organic passivation layer is located between the contact metallization layer and the inorganic passivation structure, and located vertically closer to the semiconductor substrate than a part of the organic passivation layer located on top of the inorganic passivation structure.
Abstract:
A semiconductor component includes: gate structures extending from a first surface into an SiC semiconductor body; a drift zone of a first conductivity type formed in the SiC semiconductor body; first mesas and second mesas arranged between the gate structures in the SiC semiconductor body; body areas of a second conductivity type arranged in the first mesas and the second mesas, the body areas each adjoining a first side wall of one of the gate structures; first shielding areas of the second conductivity type adjoining a second side wall of one of the gate structures; second shielding areas of the second conductivity type adjoining the body areas in the second mesas; and diode areas of the conductivity type of the drift zone, the diode areas forming Schottky contacts with a load electrode between the first shielding areas and the second shielding areas.
Abstract:
A semiconductor device includes a silicon carbide body that includes a first section and a second section. The first section is adjacent to the second section. A drift region is formed in the first section and the second section. A lattice defect region is in a portion of the drift region in the second section. A first density of lattice defects, which include interstitials and vacancies in the lattice defect region, is at least double a second density of lattice defects, which include interstitials and vacancies in a portion of the drift region outside the lattice defect region.
Abstract:
A silicon carbide body includes a drift structure having a first conductivity type, a body region, and a shielding region. The body and shielding regions, of a second conductivity type, are located between the drift structure and a first surface of the silicon carbide body. First and second trench gate stripes extend into the silicon carbide body. The body region is in contact with a first sidewall of the first trench gate stripe. The shielding region is in contact with a second sidewall of the second trench gate stripe. The second sidewall has a first length in a lateral first direction parallel to the first surface. A supplementary region of the first conductivity type contacts one or more interface areas of the second sidewall. The one or more interface areas have a combined second length along the first direction, the second length being at most 40% of the first length.
Abstract:
A semiconductor device includes a semiconductor body formed from a semiconductor material with a band-gap of at least 2.0 eV, the semiconductor body having a diode region and a source region. The semiconductor device further includes a trench gate structure having a first sidewall and a second sidewall opposite the first sidewall, the first sidewall and the second sidewall extending along a common longitudinal direction. A doping concentration of a first doping type is higher in the diode region than in the source region. The trench gate structure projects from a first surface of the semiconductor body into the semiconductor body. A first portion of the second sidewall at the first surface is directly adjoined by the source region. A second portion of the second sidewall is in direct contact with the diode region. Additional semiconductor device embodiments are provided.
Abstract:
A trench is formed that extends from a main surface into a crystalline silicon carbide semiconductor layer. A mask is formed that includes a mask opening exposing the trench and a rim section of the main surface around the trench. By irradiation with a particle beam a first portion of the semiconductor layer exposed by the mask opening and a second portion outside of the vertical projection of the mask opening and directly adjoining to the first portion are amorphized. A vertical extension of the amorphized second portion gradually decreases with increasing distance to the first portion. The amorphized first and second portions are removed.
Abstract:
A semiconductor device includes a semiconductor body and at least one device cell integrated in the semiconductor body. Each device cell includes: a drift region, a source region, and a body region arranged between the source and drift regions; a diode region and a pn junction between the diode and drift regions; a trench having a first sidewall, a second sidewall opposite the first sidewall, and a bottom, the body region adjoining the first sidewall, the diode region adjoining the second sidewall, and the pn junction adjoining the bottom; a gate electrode in the trench and dielectrically insulated from the body, diode and drift regions by a gate dielectric. The diode region has a lower diode region arranged below the trench bottom, and the lower diode region has a maximum of a doping concentration distant to the trench bottom. A corresponding method of manufacturing the device also is provided.
Abstract:
A semiconductor device includes a transistor cell with a stripe-shaped trench gate structure that extends from a first surface into a semiconductor body. A gate connector structure at a distance to the first surface is electrically connected to a gate electrode in the trench gate structure. A gate dielectric separates the gate electrode from the semiconductor body. First sections of the gate dielectric outside a vertical projection of the gate connector structure are thinner than second sections within the vertical projection of the gate connector structure.
Abstract:
A silicon-carbide semiconductor substrate having a plurality of first doped regions being laterally spaced apart from one another and beneath a main surface, and a second doped region extending from the main surface to a third doped region that is above the first doped regions is formed. Fourth doped regions extending from the main surface to the first doped regions are formed. A gate trench having a bottom that is arranged over a portion of one of the first doped regions is formed. A high-temperature step is applied to the substrate so as to realign silicon-carbide atoms along sidewalls of the trench and form rounded corners in the gate trench. A surface layer that forms along the sidewalls of the gate trench during the high-temperature step from the substrate is removed.