摘要:
A method of forming a semiconductor device, including forming a first semiconductor layer on a semiconductor substrate, the first semiconductor layer being of the same dopant type as the semiconductor substrate, the first semiconductor layer having a higher dopant concentration than the semiconductor substrate, increasing the porosity of the first semiconductor layer, first annealing the first semiconductor layer at a temperature of at least 1050° C., forming a second semiconductor layer on the first semiconductor layer and separating the second semiconductor layer from the semiconductor substrate by splitting within the first semiconductor layer.
摘要:
According to an embodiment of a method described herein, a silicon carbide substrate is provided that includes a plurality of device regions. A front side metallization may be provided at a front side of the silicon carbide substrate. The method may further comprise providing an auxiliary structure at a backside of the silicon carbide substrate. The auxiliary structure includes a plurality of laterally separated metal portions. Each metal portion is in contact with one device region of the plurality of device regions.
摘要:
A method of manufacturing a plurality of glass members comprises bringing a first main surface of a glass substrate in contact with a first working surface of a first mold substrate, the first working surface being provided with a plurality of first protruding portions, and bringing a second main surface of the glass substrate in contact with a second working surface of a second mold substrate, the second working surface being provided with a plurality of second protruding portions. The method further comprises controlling a temperature of the glass substrate to a temperature above a glass-transition temperature to form the plurality of glass members, removing the first and the second mold substrates from the glass substrate, and separating adjacent ones of the plurality of glass members.
摘要:
A semiconductor device includes a common doping region located within a semiconductor substrate of the semiconductor device. The common doping region includes a first portion. A maximal doping concentration within the first portion is higher than 1·1015 cm−3. The common doping region includes a second portion. A minimal doping concentration within the second portion is lower than 50% of the maximal doping concentration within the first portion of the common doping region. The common doping region includes a third portion. A minimal doping concentration within the third portion is more than 30% higher than the minimal doping concentration within the second portion. The second portion of the common doping region is located vertically between the first portion of the common doping region and the third portion of the common doping region.
摘要:
A lithium ion battery includes a first substrate having a first main surface, and a lid including an insulating material. The lid is attached to the first main surface of the first substrate, and a cavity is defined between the first substrate and the lid. The lithium ion battery further includes an electrical interconnection element in the lid, the electrical interconnection element providing an electrical connection between a first main surface and a second main surface of the lid. The lithium ion battery further includes an electrolyte in the cavity, an anode at the first substrate, the anode including a component made of a semiconductor material, and a cathode at the lid.
摘要:
A Magnetic Czochralski semiconductor wafer having opposing first and second sides arranged distant from one another in a first vertical direction is treated by implanting first particles into the semiconductor wafer via the second side to form crystal defects in the semiconductor wafer. The crystal defects have a maximum defect concentration at a first depth. The semiconductor wafer is heated in a first thermal process to form radiation induced donors. Implantation energy and dose are chosen such that the semiconductor wafer has, after the first thermal process, an n-doped semiconductor region arranged between the second side and first depth, and the n-doped semiconductor region has, in the first vertical direction, a local maximum of a net doping concentration between the first depth and second side and a local minimum of the net doping concentration between the first depth and first maximum.
摘要:
A method of manufacturing a plurality of glass members comprises bringing a first main surface of a glass substrate in contact with a first working surface of a first mold substrate, the first working surface being provided with a plurality of first protruding portions, and bringing a second main surface of the glass substrate in contact with a second working surface of a second mold substrate, the second working surface being provided with a plurality of second protruding portions. The method further comprises controlling a temperature of the glass substrate to a temperature above a glass-transition temperature to form the plurality of glass members, removing the first and the second mold substrates from the glass substrate, and separating adjacent ones of the plurality of glass members.
摘要:
A Magnetic Czochralski semiconductor wafer having opposing first and second sides arranged distant from one another in a first vertical direction is treated by implanting first particles into the semiconductor wafer via the second side to form crystal defects in the semiconductor wafer. The crystal defects have a maximum defect concentration at a first depth. The semiconductor wafer is heated in a first thermal process to form radiation induced donors. Implantation energy and dose are chosen such that the semiconductor wafer has, after the first thermal process, an n-doped semiconductor region arranged between the second side and first depth, and the n-doped semiconductor region has, in the first vertical direction, a local maximum of a net doping concentration between the first depth and second side and a local minimum of the net doping concentration between the first depth and first maximum.
摘要:
An ion implantation apparatus includes an ion beam directing unit, a substrate support, and a controller. The controller is configured to effect a relative movement between an ion beam passing the ion beam directing unit and the substrate support. A beam track of the ion beam on a substrate mounted on the substrate support includes circles or a spiral.
摘要:
A method of forming a semiconductor device, including forming a first semiconductor layer on a semiconductor substrate, the first semiconductor layer being of the same dopant type as the semiconductor substrate, the first semiconductor layer having a higher dopant concentration than the semiconductor substrate, increasing the porosity of the first semiconductor layer, first annealing the first semiconductor layer at a temperature of at least 1050° C., forming a second semiconductor layer on the first semiconductor layer and separating the second semiconductor layer from the semiconductor substrate by splitting within the first semiconductor layer.