Abstract:
A semiconductor package is provided. The semiconductor package may include at least one semiconductor chip including a contact pad configured to conduct a current, a conductor element, wherein the conductor element is arranged laterally overlapping the contact pad and with a distance to the contact pad, at least one electrically conductive spacer, a first adhesive system configured to electrically and mechanically connect the at least one electrically conductive spacer with the contact pad, and a second adhesive system configured to electrically and mechanically connect the at least one electrically conductive spacer with the conductor element, wherein the conductor element is electrically conductively connected to a clip or is at least part of a clip, and wherein the spacer is configured to electrically conductively connect the contact pad with the laterally overlapping portion of the conductor element.
Abstract:
A semiconductor package is provided. The semiconductor package may include at least one semiconductor chip including a contact pad configured to conduct a current, a conductor element, wherein the conductor element is arranged laterally overlapping the contact pad and with a distance to the contact pad, at least one electrically conductive spacer, a first adhesive system configured to electrically and mechanically connect the at least one electrically conductive spacer with the contact pad, and a second adhesive system configured to electrically and mechanically connect the at least one electrically conductive spacer with the conductor element, wherein the conductor element is electrically conductively connected to a clip or is at least part of a clip, and wherein the spacer is configured to electrically conductively connect the contact pad with the laterally overlapping portion of the conductor element.
Abstract:
A method includes providing a lead frame with a central metal plate and a plurality of leads extending away from the central metal plate, the central metal plate including an upper surface that includes a first mesa that is elevated from recessed regions, mounting a semiconductor die on the upper surface of central metal plate such that a lower surface of the semiconductor die is at least partially disposed on the first mesa, forming electrical interconnections between terminals of the semiconductor die and the leads, forming an encapsulant body on the central metal plate such that the semiconductor die is encapsulated by the encapsulant body and such that the leads protrude out from edge sides of the encapsulant body, and thinning the central metal plate from a rear surface of the central metal plate so as to isolate the first mesa at a lower surface of the encapsulant body.
Abstract:
One aspect of the invention relates to a method for producing a chip assemblage. Two or more chip assemblies are produced in each case by cohesively and electrically conductively connecting an electrically conductive first compensation lamina to a first main electrode of a semiconductor chip. A control electrode interconnection structure is arranged in a free space between the chip assemblies. Electrically conductive connections are produced between the control electrode interconnection structure and control electrodes of the semiconductor chips of the individual chip assemblies. The chip assemblies are cohesively connected by means of a dielectric embedding compound.
Abstract:
A method of manufacturing an electronic device package includes structuring a metal layer to generate a structured metal layer having a plurality of openings. Semiconductor chips are placed into at least some of the openings. An encapsulating material is applied over the structured metal layer and the semiconductor chips to form an encapsulation body. The encapsulation body is separated into a plurality of electronic device packages.
Abstract:
A packaged MEMS device may include an embedding arrangement, a MEMS device disposed in the embedding arrangement, a sound port disposed in the embedding arrangement and acoustically coupled to the MEMS device, and a grille within the sound port. Some embodiments relate to a sound transducer component including an embedding material and a substrate-stripped MEMS die embedded into the embedding material. The MEMS die may include a diaphragm for sound transduction. The sound transducer component may further include a sound port within the embedding material in fluidic or acoustic contact with the diaphragm. Further embodiments relate to a method for packaging a MEMS device or to a method for manufacturing a sound transducer component.
Abstract:
A graphene layer is generated on a substrate. A plastic material is deposited on the graphene layer to at least partially cover the graphene layer. The substrate is separated into at least two substrate pieces.
Abstract:
An embodiment method for fabricating electronic devices having two components connected by a metal layer includes applying a metal layer to each component and connecting the metal layers such that a single metal layer is formed.
Abstract:
In order to produce a power semiconductor module, a circuit carrier is populated with a semiconductor chip and with an electrically conductive contact element. After populating, the semiconductor chip and the contact element are embedded into a dielectric embedding compound, and the contact element is exposed. In addition, an electrically conductive base layer is produced which electrically contacts the exposed contact element and which bears on the embedding compound and the exposed contact element. A prefabricated metal film is applied to the base layer by means of an electrically conductive connection layer.
Abstract:
In order to produce a power semiconductor module, a circuit carrier is populated with a semiconductor chip and with an electrically conductive contact element. After populating, the semiconductor chip and the contact element are embedded into a dielectric embedding compound, and the contact element is exposed. In addition, an electrically conductive base layer is produced which electrically contacts the exposed contact element and which bears on the embedding compound and the exposed contact element. A prefabricated metal film is applied to the base layer by means of an electrically conductive connection layer.