摘要:
The hard coating layer includes at least a complex nitride or complex carbonitride layer expressed by the composition formula (Ti1-xAlx)(CyN1-y). The average Al content ratio xavg the average C content ratio yavg satisfy 0.60≦xavg≦0.95 and 0≦yavg≦0.005, respectively, each of the xavg and yavg is in atomic ratio. The crystal grains constituting the complex nitride or complex carbonitride layer include a crystal grain having the NaCl face-centered cubic structure. A predetermined average crystal grain misorientation exists in the crystal grains having the NaCl face-centered cubic structure.
摘要:
Provided herein are methods of depositing fluorine-free tungsten by sequential CVD pulses, such as by alternately pulsing a chlorine-containing tungsten precursor and hydrogen in cycles of temporally separated pulses, without depositing a tungsten nucleation layer. Methods also include depositing tungsten directly on a substrate surface using alternating pulses of a chlorine-containing tungsten precursor and hydrogen without treating the substrate surface.
摘要:
Homogeneous and transparent protective coatings for precious metals and copper alloys and techniques for forming the coatings on precious metals and copper alloys are provided. In an embodiment, ionic oxide film is deposited onto a surface of a substrate including a metal, such as a precious metal and/or a copper alloy, using pulsed chemical vapor deposition (PCVD). A homogenous and transparent solid film based on ionic oxide is formed on the surface of the substrate in response to the depositing.
摘要:
Methods of depositing a film on a substrate surface include surface mediated reactions in which a film is grown over one or more cycles of reactant adsorption and reaction. In one aspect, the method is characterized by intermittent delivery of dopant species to the film between the cycles of adsorption and reaction.
摘要:
A method of forming a zinc oxide film or a magnesium zinc oxide film which has a high transmittance. The method of forming a zinc oxide film or a magnesium zinc oxide film includes (A) converting a solution containing zinc, or zinc and magnesium into mist, (B) heating a substrate, and (C) supplying the solution converted into mist, and ozone to a first main surface of the substrate under heating.
摘要:
Embodiments of the present disclosure generally relate to an improved method for forming a dielectric film stack used for inter-level dielectric (ILD) layers in a 3D NAND structure. In one embodiment, the method comprises providing a substrate having a gate stack deposited thereon, forming on exposed surfaces of the gate stack a first oxide layer using a first RF power and a first process gas comprising a TEOS gas and a first oxygen-containing gas, and forming over the first oxide layer a second oxide layer using a second RF power and a second process gas comprising a silane gas and a second oxygen-containing gas.
摘要:
Methods of depositing boron and carbon containing films are provided. In some embodiments, methods of depositing B, C films with desirable properties, such as conformality and etch rate, are provided. One or more boron and/or carbon containing precursors can be decomposed on a substrate at a temperature of less than about 400° C. One or more of the boron and carbon containing films can have a thickness of less than about 30 angstroms. Methods of doping a semiconductor substrate are provided. Doping a semiconductor substrate can include depositing a boron and carbon film over the semiconductor substrate by exposing the substrate to a vapor phase boron precursor at a process temperature of about 300° C. to about 450° C., where the boron precursor includes boron, carbon and hydrogen, and annealing the boron and carbon film at a temperature of about 800° C. to about 1200° C.
摘要:
Methods of depositing a film on a substrate surface include surface mediated reactions in which a film is grown over one or more cycles of reactant adsorption and reaction. In one aspect, the method is characterized by intermittent delivery of dopant species to the film between the cycles of adsorption and reaction.
摘要:
Embodiments of the present invention provide hydrogen-free dielectric films and methods of fabrication. A hydrogen-free precursor, such as tetraisocyanatosilane, and hydrogen-free reactants, such as nitrogen, oxygen (O2/O3) and nitrous oxide are used with chemical vapor deposition processes (PECVD, thermal CVD, SACVD, HDP CVD, and PE and Thermal ALD) to create hydrogen-free dielectric films. In some embodiments, there are multilayer dielectric films with sublayers of various materials such as silicon oxide, silicon nitride, and silicon oxynitride. In embodiments, the hydrogen-free reactants may include Tetra Isocyanato Silane, along with a hydrogen-free gas including, but not limited to, N2, O2, O3, N2O, CO2, CO and a combination thereof of these H-Free gases. Plasma may be used to enhance the reaction between the TICS and the other H-free gasses. The plasma may be controlled during film deposition to achieve variable density within each sublayer of the films.
摘要:
Provided is a method for fabricating anti-reflection film with anti-PID effect. The method comprises: vacuuming a furnace tube, holding the temperature in the furnace at 420° C. and the pressure as 80 mTorr for 4 minutes; pretreating silicon wafers at 420° C. with a nitrous oxide flux of 3.8-4.4 slm and pressure of 1700 mTorr for 3 minutes; testing pressure to keep a inner pressure of the furnace tube as a constant value of 50 mTorr for 0.2-0.5 minute; pre-depositing at 420° C., with a ammonia gas flux of 0.1-0.5 slm, a silane flux of 180 sccm-200 sccm, a nitrous oxide flux of 3.5-4.1 slm, pressure of 1000 mTorr and radio frequency power of 4300 w for 0.3-0.5 minute; depositing a film at 450° C., with a ammonia gas flux of 2000-2200 sccm, a silane flux of 7000-7500 sccm, a nitrous oxide flux of 2-2.4 slm, pressure of 1700 mTorr and radio frequency power of 4300 w for 3 minutes; blowing and cooling the film at 420° C. with a nitrogen gas flux of 6-10 slm, pressure of 10000 mTorr for 5-8 minutes. The deposition steps may be more than 2 steps. The obtained anti-reflection film has anti-PID effect, thus can improve the electrical performance of solar cells.