摘要:
A faceplate for a substrate process chamber comprises a first and second surface. The second surface is shaped such that the second surface includes a peak and a distance between the first and second surface varies across the width of the faceplate. The second surface of the faceplate is exposed to a processing volume of the process chamber. Further, the faceplate may be part of a lid assembly for the process chamber. The lid assembly may include a blocker plate facing the first surface of the faceplate. A distance between the blocker plate and the first surface is constant.
摘要:
Examples disclosed herein relate to a method and apparatus for cleaning and repairing a substrate support having a heater disposed therein. A method includes (a) cleaning a surface of a substrate support having a bulk layer, the substrate support is disposed in a processing environment configured to process substrates. The cleaning process includes forming a plasma at a high temperature from a cleaning gas mixture having a fluorine containing gas and oxygen. The method includes (b) removing oxygen radicals from the processing environment with a treatment plasma formed from a treatment gas mixture. The treatment gas mixture includes the fluorine containing gas. The method further includes (c) repairing an interface of the substrate support and the bulk layer with a post-treatment plasma. The post-treatment plasma is formed from a post-treatment gas mixture including a nitrogen containing gas. The high temperature is greater than or equal to about 500 degrees Celsius.
摘要:
A method of forming a film stack with reduced defects is provided and includes positioning a substrate on a substrate support within a processing chamber and sequentially depositing polysilicon layers and silicon oxide layers to produce the film stack on the substrate. The method also includes supplying a current of greater than 5 ampere (A) to a plasma profile modulator while generating a deposition plasma within the processing chamber, exposing the substrate to the deposition plasma while depositing the polysilicon layers and the silicon oxide layers, and maintaining the processing chamber at a pressure of greater than 2 Torr to about 100 Torr while depositing the polysilicon layers and the silicon oxide layers.
摘要:
A faceplate for a substrate process chamber comprises a first and second surface. The second surface is shaped such that the second surface includes a peak and a distance between the first and second surface varies across the width of the faceplate. The second surface of the faceplate is exposed to a processing volume of the process chamber. Further, the faceplate may be part of a lid assembly for the process chamber. The lid assembly may include a blocker plate facing the first surface of the faceplate. A distance between the blocker plate and the first surface is constant.
摘要:
Embodiments described herein relate to methods and materials for fabricating semiconductor devices, such as memory devices and the like. In one embodiment, a memory layer stack includes materials having differing etch rates in which one material is selectively removed to form an airgap in the device structure. In another embodiment, silicon containing materials of a memory layer stack are doped or fabricated as a silicide material. In another embodiment, a silicon nitride material is utilized as an interfacial layer between oxide containing and silicon containing layers of a memory layer stack.
摘要:
A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
摘要:
A method and apparatus for a dual-channel showerhead is provided. In one embodiment the showerhead comprises a body comprising a conductive material having a plurality of first openings formed therethrough comprising a first gas channel and a plurality of second openings formed therethrough comprising a second gas channel that is fluidly separated from the first gas channel, wherein each of the first openings having a geometry that is different than each of the second openings.
摘要:
Implementations of the present disclosure generally relate to thin films incorporating high aspect ratio feature definitions and methods for forming the same. As gate height increases, 3D NAND gate stacks are subject to higher aspect ratio etching. Due to the current limitations of etching techniques, the vertical etch profile typically tapers as the depth into the gate stack increases. The inventors have devised a unique deposition scheme that compensates for etch performance degradation in deep trenches by a novel plasma-enhanced chemical vapor deposition (PECVD) film deposition method. The inventors have found that by grading various properties (e.g., refractive index, stress of the film, dopant concentration in the film) of the as-deposited films (e.g., silicon nitride) a more uniform etch profile can be achieved by compensating for variations in both dry and wet etch rates.
摘要:
A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
摘要:
Implementations of the present disclosure generally provide improved methods for cleaning a vacuum chamber to remove adsorbed contaminants therefrom prior to a chamber seasoning process while maintaining the chamber at desired deposition processing temperatures. The contaminants may be formed from the reaction of cleaning gases with the chamber components and the walls of the vacuum chamber.