摘要:
Embodiments of the present disclosure generally relate to methods and apparatus for measuring and controlling local impedances at a substrate support in a plasma processing chamber during processing of a substrate. A substrate support includes a plurality of substrate support pins wherein the radio frequency voltage, current and phase of each of the plurality of substrate support pins are measured and impedances of the support pins are adjusted in real time. Each of the substrate support pins is coupled to an associated adjustable impedance circuit that may be remotely controlled. In one embodiment a variable capacitor is used to adjust the impedance of the impedance circuit coupled to the associated substrate support pin and may be remotely adjusted with a stepper motor. In another embodiment a microcontroller may control the impedance adjustments for all of the plurality of substrate support pins and may be used to track these impedances with each other and with a bulk impedance of the plasma processing chamber.
摘要:
A method and apparatus for a heated substrate support pedestal is provided. In one embodiment, a substrate support pedestal includes a ceramic body having a top surface and a bottom surface. The substrate support pedestal has a stem coupled to the bottom surface of the ceramic body. A top electrode is disposed within the ceramic body. A conductive rod is disposed through the stem and coupled to the top electrode. A plurality of heater elements is disposed within the ceramic body below the top electrode. A ground mesh is disposed within the ceramic body, below the plurality of heater elements, and above the bottom surface of the ceramic body.
摘要:
A method and apparatus for a pedestal is provided. In one embodiment, the pedestal includes a body comprising a ceramic material having a flange, one or more heating elements embedded in the body, a first shaft coupled to the flange, and a second shaft coupled to the first shaft; wherein the second shaft includes a plurality of fluid channels formed therein that terminate in the second shaft.
摘要:
A heated support assembly is disclosed which includes a body comprising aluminum nitride doped with magnesium oxide having a volume resistivity of about 1×1010 Ω-cm at about 600 degrees Celsius, an electrode embedded in the body, and a heater mesh embedded in the body.
摘要:
Embodiments of the present disclosure generally relate to a substrate support assembly in a semiconductor processing chamber. The semiconductor processing chamber may be a PECVD chamber including a substrate support assembly having a substrate support and a stem coupled to the substrate support. An RF electrode is embedded in the substrate support and a rod is coupled to the RF electrode. The rod is made of titanium (Ti) or of nickel (Ni) coated with gold (Au), silver (Ag), aluminum (Al), or copper (Cu). The rod made of Ti or of Ni coated with Au, Ag, Al or Cu has a reduced electrical resistivity and increased skin depth, which minimizes heat generation as RF current travels through the rod.
摘要:
Implementations disclosed herein describe a bevel etch apparatus within a loadlock bevel etch chamber and methods of using the same. The bevel etch apparatus has a mask assembly within the loadlock bevel etch chamber. During an etch process, the mask assembly delivers a gas flow to control bevel etch without the use of a shadow frame. As such, the edge exclusion at the bevel edge can be reduced, thus increasing product yield.
摘要:
Embodiments of the present disclosure provide an improved electrostatic chuck for supporting a substrate. The electrostatic chuck comprises a chuck body coupled to a support stem, the chuck body having a substrate supporting surface, a plurality of tabs projecting from the substrate supporting surface of the chuck body, wherein the tabs are disposed around the circumference of the chuck body, an electrode embedded within the chuck body, the electrode extending radially from a center of the chuck body to a region beyond the plurality of tabs, and an RF power source coupled to the electrode through a first electrical connection.
摘要:
A method and apparatus for heating a substrate in a chamber are provided. an apparatus for positioning a substrate in a processing chamber. In one embodiment, the apparatus comprises a substrate support assembly having a support surface adapted to receive the substrate and a plurality of centering members for supporting the substrate at a distance parallel to the support surface and for centering the substrate relative to a reference axis substantially perpendicular to the support surface. The plurality of the centering members are movably disposed along a periphery of the support surface, and each of the plurality of centering members comprises a first end portion for either contacting or supporting a peripheral edge of the substrate.
摘要:
Embodiments of the present disclosure provide an electrostatic chuck for maintaining a flatness of a substrate being processed in a plasma reactor at high temperatures. In one embodiment, the electrostatic chuck comprises a chuck body coupled to a support stem, the chuck body having a substrate supporting surface, and the chuck body has a volume resistivity value of about 1×107 ohm-cm to about 1×1015 ohm-cm in a temperature of about 250° C. to about 700° C., and an electrode embedded in the body, the electrode is coupled to a power supply. In one example, the chuck body is composed of an aluminum nitride material which has been observed to be able to optimize chucking performance around 600° C. or above during a deposition or etch process, or any other process that employ both high operating temperature and substrate clamping features.
摘要:
Embodiments of the present invention generally relate to semiconductor processing chamber, and more specifically, a heated support pedestal for a semiconductor processing chamber. In one embodiment, the pedestal comprises a substrate support including a support surface for receiving a substrate, a heating element encapsulated within the substrate support, and a first hollow shaft having a first end and a second end, where the first end is fixed to the substrate support. The substrate support and the first hollow shaft are made of a ceramic material and the first hollow shaft has a length between about 50 mm to 100 mm. The pedestal further comprises a second hollow shaft coupled to the second end of the first hollow shaft. The second hollow shaft has a length that is greater than the length of the first hollow shaft.