Abstract:
Some implementations provide a semiconductor device that includes a substrate, several metal and dielectric layers coupled to the substrate, and a pad coupled to one of the several metal layers. The semiconductor device also includes a first metal layer coupled to the pad and an under bump metallization layer coupled to the first metal redistribution layer. The semiconductor device further includes a mold layer covering a first surface of the semiconductor device and at least a side portion of the semiconductor device. In some implementations, the mold layer is an epoxy layer. In some implementations, the first surface of the semiconductor device is the top side of the semiconductor device. In some implementations, the mold layer covers the at least side portion of the semiconductor device such that a side portion of at least one of the several metal layers and dielectric layers is covered with the mold layer.
Abstract:
A package may include a die proximate to a structure having a substrate with interconnects and a first component coupled to the interconnects. The die may be face up or face down. The package may include a first redistribution layer coupling the die to the interconnects of the structure and a mold compound covering the die and maybe the structure.
Abstract:
An integrated package may be manufactured in a die face up orientation with a component proximate to the attached die by creating a cavity in the mold compound during fabrication. The cavity is created with an adhesive layer on the bottom to hold a component such that the top surface of the component is co-planar with the top surface of the attached die. This may allow backside grinding to take place that will not damage the component because the top surface alignment between the attached die and the component prevents the depth of the cavity from extending into the portion of the package that is ground away.
Abstract:
Some features pertain to a package on package (PoP) device that includes a first package, a first solder interconnect coupled to the first integrated circuit package, and a second package coupled to the first package through the first solder interconnect. The second package includes a first die, a package interconnect comprising a first pad, where the first solder interconnect is coupled to the first pad of the package interconnect. The second package also includes a redistribution portion coupled to the first die and the package interconnect, an encapsulation layer at least partially encapsulating the first die and the package interconnect. The first pad may include a surface that has low roughness. The encapsulation layer may encapsulate the package interconnect such that the encapsulation layer encapsulates at least a portion of the first solder interconnect.
Abstract:
An integrated circuit (IC) package that includes a first die, a wire bond coupled to the first die, a first encapsulation layer that at least partially encapsulates the first die and the wire bond, a second die, a redistribution portion coupled to the second die, and a second encapsulation layer that at least partially encapsulates the second die. In some implementations, the wire bond is coupled to the redistribution portion. In some implementations, the integrated circuit (IC) package further includes a package interconnect that is at least partially encapsulated by the second encapsulation layer. In some implementations, the integrated circuit (IC) package further includes a via that is at least partially encapsulated by the second encapsulation layer. In some implementations, the integrated circuit (IC) package has a height of about 500 microns (μm) or less.
Abstract:
Some implementations provide a semiconductor device (e.g., die, wafer) that includes a substrate, metal layers and dielectric layers coupled to the substrate, a pad coupled to one of the several metal layers, a first metal redistribution layer coupled to the pad, an under bump metallization (UBM) layer coupled to the first metal redistribution layer. The semiconductor device includes several crack stopping structures configured to surround a bump area of the semiconductor device and a pad area of the semiconductor device. The bump area includes the UBM layer. The pad area includes the pad. In some implementations, at least one crack stopping structure includes a first metal layer and a first via. In some implementations, at least one crack stopping structure further includes a second metal layer, a second via, and a third metal layer. In some implementations, at least one crack stopping structure is an inverted pyramid crack stopping structure.
Abstract:
A wafer level package device may include a molding compound that encapsulates a substrate, a back end of line and front end of line layer on the substrate and a passivation layer of a redistribution layer without encapsulating a metal layer on the passivation layer. The molding compound may eliminate sidewall chipping and cracking as well as reduce the need for back side lamination.
Abstract:
A semiconductor device is provided that has a redistribution layer with reduced resistance. The semiconductor device comprises a plurality of bonding pads on a substrate, a redistribution layer coupled to the bonding pads through a plurality of vias, a dielectric layer over the redistribution layer, that includes an opening that exposes a portion of the redistribution layer. The bonding pads are at least partially under the opening.
Abstract:
Some implementations provide a semiconductor device (e.g., die, wafer) that includes a substrate, metal layers and dielectric layers coupled to the substrate, a pad coupled to one of the several metal layers, a first metal redistribution layer coupled to the pad, an under bump metallization (UBM) layer coupled to the first metal redistribution layer. The semiconductor device includes several crack stopping structures configured to surround a bump area of the semiconductor device and a pad area of the semiconductor device. The bump area includes the UBM layer. The pad area includes the pad. In some implementations, at least one crack stopping structure includes a first metal layer and a first via. In some implementations, at least one crack stopping structure further includes a second metal layer, a second via, and a third metal layer. In some implementations, at least one crack stopping structure is an inverted pyramid crack stopping structure.