Abstract:
A wafer level package device may include a molding compound that encapsulates a substrate, a back end of line and front end of line layer on the substrate and a passivation layer of a redistribution layer without encapsulating a metal layer on the passivation layer. The molding compound may eliminate sidewall chipping and cracking as well as reduce the need for back side lamination.
Abstract:
Integrated circuit (IC) packages employing a capacitor-embedded, redistribution layer (RDL) substrate and related fabrication methods. The embedded capacitor can be coupled to a power distribution network (PDN) to provide decoupling capacitance to reduce current-resistance (IR) drop. The RDL substrate is disposed between the IC chip(s) and the package substrate to minimize distance between the embedded capacitor(s) and the IC chip(s) to reduce the parasitic inductance in the PDN, thus reducing PDN noise. With the RDL substrate disposed between the package substrate and the IC chip(s), the RDL substrate needs to support through-interconnections between the package substrate and the IC chip(s). In this regard, the RDL substrate includes an outer RDL layer adjacent to the IC chip(s) to support small pitch metal interconnects as well as provide fan-out capability. This provides enhanced connectivity compatibility with higher-density die interconnect IC chips while also supporting a closer located embedded capacitor in the PDN.
Abstract:
A package comprising a first integrated device comprising a plurality of first pillar interconnects; an encapsulation layer at least partially encapsulating the first integrated device; a metallization portion located over the first integrated device and the encapsulation layer, wherein the metallization portion includes at least one passivation layer and a plurality of metallization layer interconnects, wherein the plurality of first pillar interconnects is coupled to the plurality of metallization layer interconnects; and a second integrated device comprising a plurality of second pillar interconnects, wherein the second integrated device is coupled to the plurality of metallization layer interconnects through a plurality of second pillar interconnects and a plurality of solder interconnects.
Abstract:
Integrated circuit (IC) packages employing a capacitor-embedded, redistribution layer (RDL) substrate and related fabrication methods. The embedded capacitor can be coupled to a power distribution network (PDN) to provide decoupling capacitance to reduce current-resistance (IR) drop. The RDL substrate is disposed between the IC chip(s) and the package substrate to minimize distance between the embedded capacitor(s) and the IC chip(s) to reduce the parasitic inductance in the PDN, thus reducing PDN noise. With the RDL substrate disposed between the package substrate and the IC chip(s), the RDL substrate needs to support through-interconnections between the package substrate and the IC chip(s). In this regard, the RDL substrate includes an outer RDL layer adjacent to the IC chip(s) to support small pitch metal interconnects as well as provide fan-out capability. This provides enhanced connectivity compatibility with higher-density die interconnect IC chips while also supporting a closer located embedded capacitor in the PDN.
Abstract:
Some implementations provide a semiconductor device that includes a substrate, several metal and dielectric layers coupled to the substrate, and a pad coupled to one of the several metal layers. The semiconductor device also includes a first metal layer coupled to the pad and an under bump metallization layer coupled to the first metal redistribution layer. The semiconductor device further includes a mold layer covering a first surface of the semiconductor device and at least a side portion of the semiconductor device. In some implementations, the mold layer is an epoxy layer. In some implementations, the first surface of the semiconductor device is the top side of the semiconductor device. In some implementations, the mold layer covers the at least side portion of the semiconductor device such that a side portion of at least one of the several metal layers and dielectric layers is covered with the mold layer.
Abstract:
A semiconductor device includes a substrate having a first side and a second side, the second side having a mounting location for at least one semiconductor element, and the first side having a plurality of locations electrically connected to locations on the second side. A plurality of electrically conductive interconnects are provided at the locations, each having a first end attached at the location and a second end spaced from the substrate, and an encapsulant partially encapsulates the plurality of interconnects and has a surface lying in a first plane. The second ends are located on the side of the first plane opposite from the substrate first side, an annular space in the encapsulant surrounds each of the plurality of electrically conductive interconnects, and the annular space has a bottom located between the first plane and the substrate first side. Also a method for making such a semiconductor device.
Abstract:
Integrated circuit (IC) packages employing a capacitor-embedded, redistribution layer (RDL) substrate and related fabrication methods. The embedded capacitor can be coupled to a power distribution network (PDN) to provide decoupling capacitance to reduce current-resistance (IR) drop. The RDL substrate is disposed between the IC chip(s) and the package substrate to minimize distance between the embedded capacitor(s) and the IC chip(s) to reduce the parasitic inductance in the PDN, thus reducing PDN noise. With the RDL substrate disposed between the package substrate and the IC chip(s), the RDL substrate needs to support through-interconnections between the package substrate and the IC chip(s). In this regard, the RDL substrate includes an outer RDL layer adjacent to the IC chip(s) to support small pitch metal interconnects as well as provide fan-out capability. This provides enhanced connectivity compatibility with higher-density die interconnect IC chips while also supporting a closer located embedded capacitor in the PDN.
Abstract:
Some implementations provide a semiconductor device that includes a substrate, several metal and dielectric layers coupled to the substrate, and a pad coupled to one of the several metal layers. The semiconductor device also includes a first metal layer coupled to the pad and an under bump metallization layer coupled to the first metal redistribution layer. The semiconductor device further includes a mold layer covering a first surface of the semiconductor device and at least a side portion of the semiconductor device. In some implementations, the mold layer is an epoxy layer. In some implementations, the first surface of the semiconductor device is the top side of the semiconductor device. In some implementations, the mold layer covers the at least side portion of the semiconductor device such that a side portion of at least one of the several metal layers and dielectric layers is covered with the mold layer.
Abstract:
A semiconductor device includes a substrate having a first side and a second side, the second side having a mounting location for at least one semiconductor element, and the first side having a plurality of locations electrically connected to locations on the second side. A plurality of electrically conductive interconnects are provided at the locations, each having a first end attached at the location and a second end spaced from the substrate, and an encapsulant partially encapsulates the plurality of interconnects and has a surface lying in a first plane. The second ends are located on the side of the first plane opposite from the substrate first side, an annular space in the encapsulant surrounds each of the plurality of electrically conductive interconnects, and the annular space has a bottom located between the first plane and the substrate first side. Also a method for making such a semiconductor device.