Abstract:
Packages are configured to include an electromagnetic interference (EMI) shield. According to one example, a package includes a substrate, an electrical component, and an EMI shield. The substrate includes a first surface and a second surface. The electrical component may be coupled to the first side of the substrate. The EMI shield is formed with at least one passive device. The at least one passive device is coupled to the first surface of the substrate. The at least one passive device is located laterally to the at least one electrical component, and extends along at least a portion of the electrical component. Other aspects, embodiments, and features are also included.
Abstract:
An integrated circuit (IC) package that includes a first die, a wire bond coupled to the first die, a first encapsulation layer that at least partially encapsulates the first die and the wire bond, a second die, a redistribution portion coupled to the second die, and a second encapsulation layer that at least partially encapsulates the second die. In some implementations, the wire bond is coupled to the redistribution portion. In some implementations, the integrated circuit (IC) package further includes a package interconnect that is at least partially encapsulated by the second encapsulation layer. In some implementations, the integrated circuit (IC) package further includes a via that is at least partially encapsulated by the second encapsulation layer. In some implementations, the integrated circuit (IC) package has a height of about 500 microns (μm) or less.
Abstract:
To achieve a package-on-package having an advantageously reduced height, a first package substrate has a window sized to receive a second package die. The first package substrate interconnects to the second package substrate through a plurality of package-to-package interconnects such that the first and second substrates are separated by a gap. The second package die has a thickness greater than the gap such that the second package die is at least partially disposed within the first package substrate's window.
Abstract:
Some features pertain to a package on package (PoP) device that includes a first package, a first solder interconnect coupled to the first integrated circuit package, and a second package coupled to the first package through the first solder interconnect. The second package includes a first die, a package interconnect comprising a first pad, where the first solder interconnect is coupled to the first pad of the package interconnect. The second package also includes a redistribution portion coupled to the first die and the package interconnect, an encapsulation layer at least partially encapsulating the first die and the package interconnect. The first pad may include a surface that has low roughness. The encapsulation layer may encapsulate the package interconnect such that the encapsulation layer encapsulates at least a portion of the first solder interconnect.
Abstract:
A proposed device may reduce or eliminate a step between a die and a mold compound. Bottom and top surfaces of the die may respectively be the active and non-active sides of the die. The mold compound maybe above the top surface of the die in a fan-in area corresponding to a lateral width of the die and may also be in a fan-out area corresponding to an area that extends laterally away from a side surface of the die. The mold compound in the fan-in area need not be coplanar with the mold compound in at least a portion of the fan-out area. The device may also include a redistribution layer below the bottom surface of the die and below the mold compound, and may further include an interconnect below the redistribution layer and electrically coupled to the die through the redistribution layer. A portion of the redistribution layer may be in the fan-out area.
Abstract:
Some features pertain to an integrated circuit device that includes a first package substrate, a first die coupled to the first package substrate, a second package substrate, and a solder joint structure coupled to the first package substrate and the second package substrate. The solder joint structure includes a solder comprising a first melting point temperature, and a conductive material comprising a second melting point temperature that is less than the first melting point temperature. In some implementations, the conductive material is one of at least a homogeneous material and/or a heterogeneous material. In some implementations, the conductive material includes a first electrically conductive material and a second material. The conductive material is an electrically conductive material.
Abstract:
To achieve a package-on-package having an advantageously reduced height, a first package substrate has a window sized to receive a second package die. The first package substrate interconnects to the second package substrate through a plurality of package-to-package interconnects such that the first and second substrates are separated by a gap. The second package die has a thickness greater than the gap such that the second package die is at least partially disposed within the first package substrate's window.
Abstract:
A package that includes a first redistribution portion, a second redistribution portion, a third redistribution portion, a first encapsulation layer coupled to the first redistribution portion and the third redistribution portion, a first discrete device encapsulated by the first encapsulation layer, wherein the first discrete device is located between the first redistribution portion and the third redistribution portion, a second encapsulation layer coupled to the first redistribution portion and the second redistribution portion, and a second discrete device encapsulated by the second encapsulation layer, wherein the second discrete device is located between the first redistribution portion and the second redistribution portion.
Abstract:
A package that includes an integrated device partially enclosed in a conductive material and embedded in a package substrate. The package includes a package substrate having a first cavity, the integrated device having a first active side and an inactive side embedded in the first cavity, and a structure partially enclosing the integrated device having a first layer and a second layer, wherein the first layer is coupled between the package substrate and the integrated device, and wherein the second layer is disposed over the inactive side of the integrated device.
Abstract:
A semiconductor package may include a lower substrate with one or more electronic components attached to a surface thereof and an upper substrate with one or more cavities wherein the upper substrate is attached to the lower substrate at a plurality of connection points with the one or more electronic components fitting within a single cavity or a separate cavity for each component that allow the overall form factor of the semiconductor package to remain smaller. The plurality of connection points provide a mechanical and electrical connection between the upper and lower substrate and may include solder joints there between as well as conductive filler particles that create an adhesive reinforcement matrix when compressed for assembly.