Abstract:
Aspects disclosed herein include a device including a first antenna substrate including one or more antennas. The device also includes a metallization structure. The device also includes a first spacer disposed between the first antenna substrate and the metallization structure, configured to maintain a constant distance between the first antenna substrate and the metallization structure. The device also includes a first plurality of conductive elements, disposed within the first spacer, configured to electrically couple the first antenna substrate to the metallization structure. The device also includes where the first spacer is configured to enclose all the conductive elements, electrically coupled to the first antenna substrate, and is configured to form an air gap between the first antenna substrate and the metallization structure. The device also includes where the first plurality of conductive elements is separated by air in the air gap.
Abstract:
A package comprising a substrate comprising a plurality of interconnects, a first integrated device coupled to the substrate, a second integrated device coupled to the substrate, and an interconnect device coupled to the substrate. The first integrated device, the second integrated device, the interconnect device and the substrate are configured to provide an electrical path for an electrical signal between the first integrated device and the second integrated device, that extends through at least the substrate, through the interconnect device and back through the substrate. The electrical path includes at least one interconnect that extends diagonally.
Abstract:
A substrate that includes a core layer comprising a first surface and a second surface, at least one first dielectric layer located over a first surface of the core layer, at least one second dielectric layer located over a second surface of the core layer, high-density interconnects located over a surface of the at least one second dielectric layer, interconnects located over the surface of the at least one second dielectric layer, and a solder resist layer located over the surface of the at least one second dielectric layer. A first portion of the solder resist layer that is touching the high-density interconnects includes a first thickness that is equal or less than a thickness of the high-density interconnects. A second portion of the solder resist layer that is touching the interconnects includes a second thickness that is greater than a thickness of the interconnects.
Abstract:
An IC package includes a heat-generating device and an electrical device on a surface of a substrate, a mold compound disposed on the electrical device, and a thermal structure disposed on the heat-generating device, without the mold compound, to improve heat dissipation. In an example, the thermal structure includes a thermal interface material (TIM) layer and a heat sink. In the example, the TIM layer extends from the heat-generating device to a height equal to or less than the mold compound and the heat sink includes a planar exterior surface above the heat-generating device and the electrical device. In an example, a first heat sink portion of the heat sink on the heat-generating device may be a different thickness than a second heat sink portion of the heat sink on the electrical device. The thermal structure reduces a thermal resistance between the heat-generating device and the heat sink.
Abstract:
A package comprising a substrate, an integrated device, and an interconnect structure. The substrate includes a first surface and a second surface. The substrate further includes a plurality of interconnects for providing at least one electrical connection to a board. The integrated device is coupled to the first surface of the substrate. The interconnect structure is coupled to the first surface of the substrate. The integrated device, the interconnect structure and the substrate are coupled together in such a way that when a first electrical signal travels between the integrated device and the board, the first electrical signal travels through at least the substrate, then through the interconnect structure and back through the substrate.
Abstract:
A fan-out wafer-level-process integrated circuit is provided in which a plurality of interconnects couple to pads on an encapsulated die. The interconnects have a pad-facing surface that couples to a corresponding pad through a seed layer. The seed layer does not cover the sidewalls of the interconnects.
Abstract:
Some novel features pertain to a substrate that includes a first dielectric layer and a bridge structure. The bridge structure is embedded in the first dielectric layer. The bridge structure is configured to provide an electrical connection between a first die and a second die. The first and second dies are configured to be coupled to the substrate. The bridge structure includes a first set of interconnects and a second dielectric layer. The first set of interconnects is embedded in the first dielectric layer. In some implementations, the bridge structure further includes a second set of interconnects. In some implementations, the second dielectric layer is embedded in the first dielectric layer. The some implementations, the first dielectric layer includes the first set of interconnects of the bridge structure, a second set of interconnects in the bridge structure, and a set of pads in the bridge structure.
Abstract:
Some features pertain to an integrated device that include a first integrated circuit (IC) package comprising a first laminated substrate, a flexible connector coupled to the first laminated substrate, and a second integrated circuit (IC) package comprising a second laminated substrate. The second laminated substrate is coupled to the flexible connector. The flexible connector includes a dielectric layer and an interconnect. The dielectric layer and the interconnect substantially extend into the first laminated substrate and the second laminated substrate. In some implementations, the dielectric layer and the interconnect of the flexible connector, contiguously extend into the first laminated substrate and the second laminated substrate. In some implementations, the dielectric layer extends into a substantial portion of the first laminated substrate. In some implementations, the dielectric layer includes polyimide (PI) layer.
Abstract:
Some novel features pertain to an integrated device package that includes an encapsulation portion and a redistribution portion. The encapsulation portion includes a first die, a first set of vias coupled to the first die, a second die, a second set of vias coupled to the second die, a bridge, and an encapsulation layer. The bridge is configured to provide an electrical path between the first die and the second die. The bridge is coupled to the first die through the first set of vias. The bridge is further coupled to the second die through the second set of vias. The encapsulation layer at least partially encapsulates the first die, the second die, the bridge, the first set of vias, and the second set of vias. The redistribution portion is coupled to the encapsulation portion. The redistribution portion includes a set of redistribution interconnects, and at least one dielectric layer.
Abstract:
A substrate that includes a first dielectric layer and a capacitor embedded in the first dielectric layer. The capacitor includes a base portion, a first terminal and a second terminal. The first terminal is located on a first surface of the base portion, where the first terminal is the only terminal on the first surface of the base portion. The second terminal is located on a second surface of the base portion. The second surface is opposite to the first surface. The second terminal is the only terminal on the second surface of the base portion. In some implementations, the capacitor further includes a first base metal layer located between the first surface of the base portion and the first terminal. In some implementations, the capacitor also includes a second base metal layer located between the second surface of the base portion and the second terminal.