Abstract:
A microelectronic device includes a heat spreader layer on an electrode of a component and a metal interconnect on the heat spreader layer. The heat spreader layer is disposed above a top surface of a substrate of the semiconductor device. The heat spreader layer is 100 nanometers to 3 microns thick, has an in-plane thermal conductivity of at least 150 watts/meter-° K, and an electrical resistivity less than 100 micro-ohm-centimeters.
Abstract:
Integrated circuits are presented having high voltage IGBTs with integral emitter shorts and fabrication processes using wafer bonding or grown epitaxial silicon for controlled drift region thickness and fast switching speed.
Abstract:
Impurity atoms of a first type are implanted through a gate and a thin gate dielectric into a channel region that has substantially only the first type of impurity atoms at a middle point of the channel region to increase the average dopant concentration of the first type of impurity atoms in the channel region to adjust the threshold voltage of a transistor.
Abstract:
An integrated circuit containing an extended drain MOS transistor which has a drift layer, an upper RESURF layer over and contacting an upper surface of the drift layer, and a buried drain extension below the drift layer which is electrically connected to the drift layer at the drain end and separated from the drift layer at the channel end. A lower RESURF layer may be formed between the drift layer and the buried drain extension at the channel end. Any of the upper RESURF layer, the drift layer, the lower RESURF layer and the buried drain extension may have a graded doping density from the drain end to the channel end. A process of forming an integrated circuit containing an extended drain MOS transistor which has the drift layer, the upper RESURF layer, and the buried drain extension.
Abstract:
A method for forming a semiconductor device including a GaN FET, an overvoltage clamping component, and a voltage dropping component. The GaN FET is formed by forming a low-defect layer comprising gallium nitride, a barrier layer comprising AlxGa1−xN, a gate, and source and drain contacts. The overvoltage clamping component is coupled to a drain node of the GaN FET. The overvoltage clamping component conducts insignificant current when a voltage at the drain node is less than a safe voltage limit and conducts significant current when the voltage rises above the safe voltage limit. The voltage dropping component is coupled to the overvoltage clamping component and to a terminal for a bias potential. The voltage dropping component provides a voltage drop which increases as current from the overvoltage clamping component increases. The GaN FET turns on when the voltage drop reaches a threshold value.
Abstract translation:一种用于形成包括GaN FET,过压钳位部件和降压部件的半导体器件的方法。 通过形成包括氮化镓的低缺陷层,包含Al x Ga 1-x N的势垒层,栅极以及源极和漏极接触来形成GaN FET。 过电压钳位部件耦合到GaN FET的漏极节点。 当漏极节点处的电压小于安全电压极限时,过电压钳位元件导通无效电流,并在电压升高到安全电压极限以上时,导通大电流。 降压元件耦合到过电压钳位元件和与偏置电位的端子。 降压元件提供随着过电压钳位元件的电流增加而增加的电压降。 当电压降达到阈值时,GaN FET导通。
Abstract:
An integrated circuit containing a diode with a drift region containing a first dopant type plus scattering centers. An integrated circuit containing a DEMOS transistor with a drift region containing a first dopant type plus scattering centers. A method for designing an integrated circuit containing a DEMOS transistor with a counter doped drift region.
Abstract:
An integrated circuit containing a diode with a drift region containing a first dopant type plus scattering centers. An integrated circuit containing a DEMOS transistor with a drift region containing a first dopant type plus scattering centers. A method for designing an integrated circuit containing a DEMOS transistor with a counter doped drift region.
Abstract:
An integrated circuit containing an analog MOS transistor has an implant mask for a well which blocks well dopants from two diluted regions at edges of the gate, but exposes a channel region to the well dopants. A thermal drive step diffuses the implanted well dopants across the two diluted regions to form a continuous well with lower doping densities in the two diluted regions. Source/drain regions are formed adjacent to and underlapping the gate by implanting source/drain dopants into the substrate adjacent to the gate using the gate as a blocking layer and subsequently annealing the substrate so that the implanted source/drain dopants provide a desired extent of underlap of the source/drain regions under the gate. Drain extension dopants and halo dopants are not implanted into the substrate adjacent to the gate.
Abstract:
A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define at least one vertical drift region bounded on at least two opposite sides by the deep trench structures. The deep trench structures include dielectric liners. The deep trench structures are spaced so as to form RESURF regions for the drift region. Vertical gates are formed in vertically oriented gate trenches in the dielectric liners of the deep trench structures, abutting the vertical drift regions. A body implant mask for implanting dopants for the transistor body is also used as an etch mask for forming the vertically oriented gate trenches in the dielectric liners.
Abstract:
A semiconductor device containing a GaN FET has an isolating gate structure outside the channel area which is operable to block current in the two-dimensional electron gas between two regions of the semiconductor device. The isolating gate structure is formed concurrently with the gate of the GaN FET, and has a same structure as the gate.