Abstract:
A semiconductor device for a one-time programmable (OTP) memory according to some examples of the disclosure includes a gate, a dielectric region below the gate, a source terminal below the dielectric region and offset to one side, a drain terminal below the dielectric region and offset to an opposite side from the source terminal, a drain side charge trap in the dielectric region capable of programming the semiconductor device, and a source side charge trap in the dielectric region opposite the drain side charge trap and capable of programming the semiconductor device.
Abstract:
A compound semiconductor field effect transistor (FET) may include a channel layer. The semiconductor FET may also include an oxide layer, partially surrounded by a passivation layer, on the channel layer. The semiconductor FET may also include a first dielectric layer on the oxide layer. The semiconductor FET may also include a second dielectric layer on the first dielectric layer. The semiconductor FET may further include a gate, comprising a base gate through the oxide layer and the first dielectric layer, and a head gate in the second dielectric layer and electrically coupled to the base gate.
Abstract:
A compound semiconductor field effect transistor may include a channel layer. The compound semiconductor transistor may also include a multi-layer epitaxial barrier layer on the channel layer. The channel layer may be on a doped buffer layer or on a first un-doped buffer layer. The compound semiconductor field effect transistor may further include a gate. The gate may be on a first tier of the multi-layer epitaxial barrier layer, and through a space between portions of a second tier of the multi-layer epitaxial barrier layer.
Abstract:
A compound semiconductor field effect transistor (FET) may include a channel layer. The semiconductor FET may also include an oxide layer, partially surrounded by a passivation layer, on the channel layer. The semiconductor FET may also include a first dielectric layer on the oxide layer. The semiconductor FET may also include a second dielectric layer on the first dielectric layer. The semiconductor FET may further include a gate, comprising a base gate through the oxide layer and the first dielectric layer, and a head gate in the second dielectric layer and electrically coupled to the base gate.
Abstract:
An integrated compound semiconductor circuit including a high-Q passive device may include a compound semiconductor transistor. The integrated compound semiconductor circuity may also include a high-Q inductor device. The integrated compound semiconductor may further include a back-end-of-line interconnect layer electrically contacting the high-Q inductor device and the compound semiconductor transistor, the back-end-of-line interconnect layer comprising a gold base layer and a copper interconnect layer.
Abstract:
A heterojunction bipolar transistor may include an emitter, a base contacting the emitter, a collector contacting the base, a sub-collector contacting the collector, and an electrical isolation layer contacting the sub-collector. The heterojunction bipolar transistor may also include a backside heatsink thermally coupled to the sub-collector and the collector. The backside heatsink may be aligned with a central axis of the emitter and the base.
Abstract:
A magnetoresistive random-access memory (MRAM) integration compatible with shrinking device technologies includes a magnetic tunnel junction (MTJ) formed in a common interlayer metal dielectric (IMD) layer with one or more logic elements. The MTJ is connected to a bottom metal line in a bottom IMD layer and a top via connected to a top IMD layer. The MTJ substantially extends between one or more bottom cap layers configured to separate the common IMD layer and the bottom IMD layer and one or more top cap layers configured to separate the common IMD layer and the top IMD layer. The MTJ can include a top electrode to connect to the top via or be directly connected to the top via through a hard mask for smaller device technologies. The logic elements include vias, metal lines, and semiconductor devices.
Abstract:
Systems and methods of integration of resistive memory elements with logic elements in advanced nodes with improved mechanical stability and reduced parasitic capacitance include a resistive memory element and a logic element formed in a common integration layer extending between a bottom cap layer and a top cap layer. At least a first intermetal dielectric (IMD) layer of high-K value is formed in the common integration layer and surrounding at least the resistive memory element, to provide high rigidity and mechanical stability. A second IMD layer of low-K value to reduce parasitic capacitance of the logic element is formed in either the common integration layer, a top layer above the top cap layer or an intermediate layer in between the top and bottom cap layers. Air gaps may be formed in one or more IMD layers to further reduce capacitance.
Abstract:
Implementations of the technology described herein provide a Multiple Time Programmable (MTP) device, such as a Flash memory device, that implements a coupling gate in series with a floating gate. The coupling gate includes a ferroelectric capacitor and a conventional capacitor. The ferroelectric capacitor in combination with the coupling gate provides a negative capacitance such that the total capacitance of the combination of the floating gate and the coupling gate is larger than it would be if the coupling gate included only a conventional capacitor. One advantage of this device is that the effective coupling ratio between the coupling gate and the floating gate is increased. Another advantage is that the floating gate drops more voltage than conventional Multiple Time Programmable (MTP) devices.
Abstract:
An anti-fuse device includes a first electrode, an insulator on the first electrode, a second electrode on the insulator, and selector logic coupled to the second electrode. The device also includes a conductive path between the first and second electrodes. The conductive path may be configured to provide a hard breakdown for one-time programmable non-volatile data storage.