Abstract:
Implementations of the technology described herein provide a Multiple Time Programmable (MTP) device, such as a Flash memory device, that implements a coupling gate in series with a floating gate. The coupling gate includes a ferroelectric capacitor and a conventional capacitor. The ferroelectric capacitor in combination with the coupling gate provides a negative capacitance such that the total capacitance of the combination of the floating gate and the coupling gate is larger than it would be if the coupling gate included only a conventional capacitor. One advantage of this device is that the effective coupling ratio between the coupling gate and the floating gate is increased. Another advantage is that the floating gate drops more voltage than conventional Multiple Time Programmable (MTP) devices.
Abstract:
An advanced metal-nitride-oxide-silicon (MNOS) multiple time programmable (MTP) memory is provided. In an example, an apparatus includes a two field effect transistor (2T field FET) metal-nitride-oxide-silicon (MNOS) MTP memory. The 2T field FET MNOS MTP memory can include an interlayer dielectric (ILD) oxide region that is formed on a well and separates respective gates of first and second transistors from the well. A control gate is located between the respective gates of the first and second transistors, and a silicon-nitride-oxide (SiN) region is located between a metal portion of the control gate and a portion of the ILD oxide region.