Abstract:
An integrated circuit includes a junction field-effect transistor formed in a semiconductor substrate. The junction field-effect transistor includes a drain region, a source region, a channel region, and a gate region. A first isolating region separates the drain region from both the gate region and the channel region. A first connection region connects the drain region to the channel region by passing underneath the first isolating region in the semiconductor substrate. A second isolating region separates the source region from both the gate region and the channel region. A second connection region connects the source region to the channel region by passing underneath the second isolating region in the semiconductor substrate.
Abstract:
Some embodiments include an integrated structure having a semiconductor base and an insulative frame over the semiconductor base. The insulative frame has vertically-spaced sheets of first insulative material, and pillars of second insulative material between the vertically-spaced sheets. The first and second insulative materials are different from one another. Conductive plates are between the vertically-spaced sheets and are directly against the insulative pillars. Some embodiments include capacitors, and some embodiments include methods of forming capacitors.
Abstract:
A method of forming a fin field effect transistor (finFET), including forming a temporary gate structure having a sacrificial gate layer and a dummy gate layer on the sacrificial gate layer, forming a gate spacer layer on each sidewall of the temporary gate structure, forming a source/drain spacer layer on the outward-facing sidewall of each gate spacer layer, removing the dummy gate layer to expose the sacrificial gate layer, removing the sacrificial gate layer to form a plurality of recessed cavities, and forming a gate structure, where the gate structure occupies at least a portion of the plurality of recessed cavities.
Abstract:
A semiconductor device includes: a substrate having a first region and a second region; a first fin-shaped structure on the first region and a second fin-shaped structure on the second region; a first bump on the first region; a first doped layer on the first fin-shaped structure and the bump; and a gate structure covering the bump.
Abstract:
A semiconductor structure is provided that includes a first metal resistor structure located on a portion of a dielectric-containing substrate. The first metal resistor structure includes, from bottom to top, a first nitridized dielectric surface layer portion having a first nitrogen content, a first metal portion, and a first dielectric capping layer portion. The semiconductor structure of the present application further includes a second metal resistor structure located on a second portion of the dielectric-containing substrate and spaced apart from the first metal resistor structure. The second metal resistor structure includes, from bottom to top, a second nitridized dielectric surface layer portion having a second nitrogen content that differs from the first nitrogen content, a second metal portion, and a second dielectric capping layer portion.
Abstract:
A semiconductor arrangement and a method for manufacturing the same. An arrangement may include a bulk semiconductor substrate; a fin formed on the substrate; a first FinFET and a second FinFET formed on the substrate. The first FinFET comprises a first gate stack intersecting the fin and a first gate spacer disposed on sidewalls of the first gate stack. The second FinFET includes a second gate stack intersecting the fin and a second gate spacer disposed on sidewalls of the second gate stack; a dummy gate spacer formed between the first FinFET and the second FinFET and intersecting the fin; an isolation section self-aligned to a space defined by the dummy gate spacer. The isolation section electrically isolates the first FinFET from the second FinFET; and an insulation layer disposed under and abutting the isolation section.
Abstract:
A device for detecting at least one gaseous analyte comprises a detection section including a semiconductor substrate and at least one sensor element, which is arranged on the semiconductor substrate. The at least one sensor element includes two electrodes and a solid electrolyte layer arranged between the electrodes. The device also comprises a protective cap configured to cover the at least one sensor element, and at least one temperature-control unit configured for temperature control of the protective cap. The at least one temperature-control unit is arranged on the protective cap. The protective cap is formed from a semiconductor material. The device further comprises a diffusion section having a plurality of passage openings for the gaseous analyte arranged at least in a partial section of the protective cap.
Abstract:
Some embodiments include methods of forming semiconductor constructions. Carbon-containing material is formed over oxygen-sensitive material. The carbon-containing material and oxygen-sensitive material together form a structure having a sidewall that extends along both the carbon-containing material and the oxygen-sensitive material. First protective material is formed along the sidewall. The first protective material extends across an interface of the carbon-containing material and the oxygen-sensitive material, and does not extend to a top region of the carbon-containing material. Second protective material is formed across the top of the carbon-containing material, with the second protective material having a common composition to the first protective material. The second protective material is etched to expose an upper surface of the carbon-containing material. Some embodiments include semiconductor constructions, memory arrays and methods of forming memory arrays.
Abstract:
Methods, devices, and systems associated with phase change material memory are described herein. In one or more embodiments, a method of forming a phase change material memory cell includes forming a number of memory structure regions, wherein the memory structure regions include a bottom electrode material and a sacrificial material, forming a number of insulator regions between the number of memory structure regions, forming a number of openings between the number of insulator regions and forming a contoured surface on the number of insulator regions by removing the sacrificial material and a portion of the number of insulator regions, forming a number of dielectric spacers on the number of insulator regions, forming a contoured opening between the number of insulator regions and exposing the bottom electrode material by removing a portion of the number of dielectric spacers, and forming a phase change material in the opening between the number of insulator regions.