Abstract:
A power module includes a sealed body in which a semiconductor chip-mounted conductor plate is sealed by a resin in such a manner that a heat dissipating surface of the conductor plate is exposed, a heat dissipating member that is arranged to face the heat dissipating surface, and an insulation layer that is arranged between the sealed body and the heat dissipating member. The insulation layer has a laminated body that is made by laminating an impregnation resin-impregnated ceramic thermal spray film and a bonding resin layer in which a filler having good thermal conductivity is mixed, and that is provided to be in contact with the heat dissipating member and at least the entirety of the heat dissipating surface, and a stress relief resin portion that is provided in a gap between the heat dissipating member and the sealed body to cover an entire circumferential end portion of the laminated body.
Abstract:
In a laser welding method, a gap between first and second members to be welded is made at most 300 μm by pressing the second member against the first member with claws that are pressing parts of a laser welding jig, and the second member to be welded at a place between the claws is irradiated by laser light to laser-weld the first member and the second member. In a semiconductor device, the gap between the first member and the second member at the portion of laser-welding is at most 300 μm.
Abstract:
A power semiconductor module includes: a plurality of first metal plates arranged in the same planar state; a power semiconductor chip mounted on the first metal plate; and an overbridge-shaped second metal plate which is composed of bridge frame sections and leg sections that support the bridge frame sections, the leg sections being for appropriately performing solder bonding between electrodes of the power semiconductor chips and between the electrode of the power semiconductor chip and the first metal plate, the power semiconductor module being configured by a resin package in which these members are sealed with electrically insulating resin. In the power semiconductor module, the solder bonding section of the leg section is formed in a planar shape by bending process and is provided at a position lower than the bridge frame section.
Abstract:
A semiconductor package includes a wiring substrate, a semiconductor chip, and a conductor plate in order to reduce a voltage drop at the central portion of a chip caused by wiring resistance from a peripheral connection pad disposed on the periphery of the chip. Central electrode pads for use in ground/power-supply are disposed on the central portion of the chip. The conductor plate for use in ground/power-supply is disposed on the chip such that an insulating layer is disposed therebetween. The central electrode pads on the chip and the conductor plate are connected together by wire bonding through an opening formed in the insulating layer and the conductor plate. An extraction portion of the conductor plate is connected to a power-supply wiring pad on the wiring substrate. Preferably, the conductor plate is composed of a multilayer structure, and each conductor plate is used in power-supply wiring or ground wiring.
Abstract:
A semiconductor device which can prevent a deterioration in the electrical properties by preventing sputters generated by laser welding from adhering to a circuit pattern or a semiconductor chip and a method for fabricating such a semiconductor device are provided. A connection conductor is bonded to a copper foil formed over a ceramic by a solder and resin is injected to a level lower than a top of the connection conductor. Laser welding is then performed. After that, resin is injected. This prevents sputters generated by the laser welding from adhering to a circuit pattern or a semiconductor chip. As a result, a deterioration in the electrical properties can be prevented.
Abstract:
An electronic device and method of manufacturing. One embodiment includes attaching a first semiconductor chip to a first metallic clip. The first semiconductor chip is placed over a leadframe after the attachment of the first semiconductor chip to the first metallic clip.
Abstract:
A MOSFET power chip includes a first vertical MOSFET and a second vertical MOSFET. The first vertical MOSFET includes a semiconductor body having a first surface defining a source and a second surface defining a drain and a gate structure formed in the semiconductor body near the second surface. A via is formed within the semiconductor body and is substantially perpendicular to the first surface and the second surface. The via has a first end electrically coupled to the first surface and a second end electrically coupled to the gate structure. The second vertical MOSFET includes a semiconductor body having a first surface defining a source, a second surface defining a drain and a gate structure formed in the semiconductor body near the first surface.
Abstract:
A light-emitting device reliably supplying electric power to a light-emitting element on a supporting base and securing heat dissipation, and a method of manufacturing the light-emitting device are provided. A light-emitting device includes: a light-emitting element arranged on a first supporting base; a package covering the first supporting base and the light-emitting element therewith, and supporting the first supporting base; and a thermal conductive member having ends which are bonded to the light-emitting element and the package, respectively, so as to also have a wiring function.
Abstract:
A MOSFET power chip includes a first vertical MOSFET and a second vertical MOSFET. The first vertical MOSFET includes a semiconductor body having a first surface defining a source and a second surface defining a drain and a gate structure formed in the semiconductor body near the second surface. A via is formed within the semiconductor body and is substantially perpendicular to the first surface and the second surface. The via has a first end electrically coupled to the first surface and a second end electrically coupled to the gate structure. The second vertical MOSFET includes a semiconductor body having a first surface defining a source, a second surface defining a drain and a gate structure formed in the semiconductor body near the first surface.
Abstract:
A semiconductor die package is disclosed. The semiconductor die package includes a semiconductor die comprising an input at a first top semiconductor die surface and an output at a second bottom semiconductor die surface. A leadframe having a first leadframe surface and a second leadframe surface opposite the first leadframe surface is in the semiconductor die package and is coupled to the first top semiconductor die surface. A clip having a first clip surface and a second clip surface is coupled to the second bottom semiconductor die surface. A molding material having exterior molding material surfaces covers at least a portion of the leadframe, the clip, and the semiconductor die. The first leadframe surface and the first clip surface are exposed by the molding material, and the first leadframe surface, the first clip surface, and the exterior molding material surfaces of the molding material form exterior surfaces of the semiconductor die package.