摘要:
A method of performing HVPE heteroepitaxy comprises exposing a substrate to a carrier gas, a first precursor gas, a Group II/III element, and ternary-forming gasses (V/VI group precursor), to form a heteroepitaxial growth of a binary, ternary, and/or quaternary compound on the substrate; wherein the carrier gas is H2, wherein the first precursor gas is HCl, the Group II/III element comprises at least one of Zn, Cd, Hg, Al, Ga, and In; and wherein the ternary-forming gasses comprise at least two or more of AsH3 (arsine), PH3 (phosphine), H2Se (hydrogen selenide), H2Te (hydrogen telluride), SbH3 (hydrogen antimonide, or antimony tri-hydride, or stibine), H2S (hydrogen sulfide), NH3 (ammonia), and HF (hydrogen fluoride); flowing the carrier gas over the Group II/III element; exposing the substrate to the ternary-forming gasses in a predetermined ratio of first ternary-forming gas to second ternary-forming gas (1tf:2tf ratio); and changing the 1tf:2tf ratio over time.
摘要:
A method of performing HVPE heteroepitaxy comprises exposing a substrate to a carrier gas, a first precursor gas, a Group II/III element, and ternary-forming gasses (V/VI group precursor), to form a heteroepitaxial growth of a binary, ternary, and/or quaternary compound on the substrate; wherein the carrier gas is H2, wherein the first precursor gas is HCl, the Group II/III element comprises at least one of Zn, Cd, Hg, Al, Ga, and In; and wherein the ternary-forming gasses comprise at least two or more of AsH3 (arsine), PH3 (phosphine), H2Se (hydrogen selenide), H2Te (hydrogen telluride), SbH3 (hydrogen antimonide, or antimony tri-hydride, or stibine), H2S (hydrogen sulfide), NH3 (ammonia), and HF (hydrogen fluoride); flowing the carrier gas over the Group II/III element; exposing the substrate to the ternary-forming gasses in a predetermined ratio of first ternary-forming gas to second ternary-forming gas (1tf:2tf ratio); and changing the 1tf:2tf ratio over time.
摘要:
A method of performing HVPE heteroepitaxy comprises exposing a substrate to a carrier gas, a first precursor gas, a Group II/III element, and ternary-forming gasses (V/VI group precursor), to form a heteroepitaxial growth of a binary, ternary, and/or quaternary compound on the substrate; wherein the carrier gas is H2, wherein the first precursor gas is HCl, the Group II/III element comprises at least one of Zn, Cd, Hg, Al, Ga, and In; and wherein the ternary-forming gasses comprise at least two or more of AsH3 (arsine), PH3 (phosphine), H2Se (hydrogen selenide), H2Te (hydrogen telluride), SbH3 (hydrogen antimonide, or antimony tri-hydride, or stibine), H2S (hydrogen sulfide), NH3 (ammonia), and HF (hydrogen fluoride); flowing the carrier gas over the Group II/III element; exposing the substrate to the ternary-forming gasses in a predetermined ratio of first ternary-forming gas to second ternary-forming gas (1tf:2tf ratio); and changing the 1tf:2tf ratio over time.
摘要:
The invention relates to an optoelectronic device (1) comprising at least one three-dimensional semiconductor structure (2) extending along a longitudinal axis (Δ) substantially orthogonal to a plane of a substrate (3) on which same lies, and comprising: a first doped portion (10), extending from one surface of the substrate (3) along the longitudinal axis (Δ); an active portion (30) comprising a passivation layer (34) and at least one quantum well (32) covered laterally by said passivation layer (34), the quantum well (32) of the active portion (30) having a mean diameter greater than that of said first doped portion (10), said active portion (30) extending from the first doped portion (10) along the longitudinal axis (Δ); and a second doped portion (20), extending from the active portion (30) along the longitudinal axis (Δ). The invention is characterized in that the device comprises a plurality of three-dimensional semiconductor structures (2) extending substantially in parallel with one another, the active portions (30) of which are in mutual contact.
摘要:
A p-channel tunneling field effect transistor (TFET) is selected from a group consisting of (i) a multi-layer structure of group IV layers and (ii) a multi-layer structure of group III-V layers. The p-channel TFET includes a channel region comprising one of a silicon-germanium alloy with non-zero germanium content and a ternary III-V alloy. An n-channel TFET is selected from a group consisting of (i) a multi-layer structure of group IV layers and (ii) a multi-layer structure of group III-V layers. The n-channel TFET includes an n-type region, a p-type region with a p-type delta doping, and a channel region disposed between and spacing apart the n-type region and the p-type region. The p-channel TFET and the n-channel TFET may be electrically connected to define a complementary field-effect transistor element. TFETs may be fabricated from a silicon-germanium TFET layer structure grown by low temperature molecular beam epitaxy at a growth temperature at or below 500° C.
摘要:
Methods for depositing silicon on a semiconductor or metallic surface include cycling dosing of silane and chlorosilane precursors at a temperature between 50° C. and 300° C., and continuing cycling between three and twenty three cycles until the deposition self-limits via termination of surface sites with Si—H groups. Methods of layer formation include depositing a chlorosilane onto a substrate to form a first layer, wherein the substrate is selected from the group consisting of InxGa1-xAs, InxGa1-xSb, InxGa1-xN, SiGe, and Ge, wherein X is between 0.1 and 0.99. The methods may include pulsing a silane to form a silicon monolayer and cycling dosing of the chlorosilane and the silane. Layered compositions include a first layer selected from the group consisting of InxGa1-xAs, InxGa1-xSb, InxGa1-xN, SiGe, and Ge, wherein X is between 0.1 and 0.99, and a second layer, wherein the second layer comprises Si—H and Si—OH.
摘要:
Method for fabricating a semiconductor structure. The method includes: providing a crystalline silicon substrate; defining an opening in a dielectric layer on the crystalline silicon substrate, the opening having sidewalls and a bottom wherein the bottom corresponds to a surface of the crystalline silicon substrate; providing a confinement structure above the dielectric layer, thereby forming a confinement region between the confinement structure and the dielectric layer; and growing a crystalline compound semiconductor material in the confinement region thereby at least partially filling the confinement region. The present invention also provides an improved compound semiconductor structure and a device for fabricating such semiconductor structure.
摘要:
Methods for processing a substrate include (a) providing a substrate comprising a silicon germanium layer and a patterned mask layer atop the silicon germanium layer to define a feature in the silicon germanium layer; (b) exposing the substrate to a first plasma formed from a first process gas to etch a feature into the silicon germanium layer; (c) subsequently exposing the substrate to a second plasma formed from a second process gas to form an oxide layer on a sidewall and a bottom of the feature; (d) exposing the substrate to a third plasma formed from a third process gas to etch the oxide layer from the bottom of the feature; and (e) repeating (b)-(d) to form the feature in the first layer to a desired depth, wherein the first process gas, the second process gas and the third process gas are not the same.
摘要:
A semiconductor structure includes a III-V monocrystalline layer and a germanium surface layer. An interlayer is formed directly between the III-V monocrystalline layer and the germanium surface layer from a material selected to provide stronger nucleation bonding between the interlayer and the germanium surface layer than nucleation bonding that would be achievable directly between the III-V monocrystalline layer and the germanium surface layer such that a continuous, relatively defect-free germanium surface layer is provided.
摘要:
A process is disclosed for producing quantum dots (QDs) by reacting one or more core semiconductor precursors with phosphine in the presence of a molecular cluster compound. The core semiconductor precursor(s) provides elements that are incorporated into the QD core semiconductor material. The core semiconductor also incorporates phosphorus, which is provided by the phosphine. The phosphine may be provided to the reaction as a gas or may, alternatively, be provided as an adduct of another material.