摘要:
A semiconductor device includes a first non-flat non-polar nitride semiconductor layer, a first structure layer on at least a portion of the surface of the first non-flat non-polar nitride semiconductor layer and a first non-polar nitride semiconductor layer on the first non-flat non-polar nitride semiconductor layer and the first structure layer. The first non-flat non-polar nitride semiconductor layer includes a plurality of solid particles.
摘要:
Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.
摘要:
A complementary metal oxide semiconductor (CMOS) device in which a single InxGa1-xSb quantum well serves as both an n-channel and a p-channel in the same device and a method for making the same. The InxGa1-xSb layer is part of a heterostructure that includes a Te-delta doped AlyGa1-ySb layer above the InxGa1-xSb layer on a portion of the structure. The portion of the structure without the Te-delta doped AlyGa1-ySb barrier layer can be fabricated into a p-FET by the use of appropriate source, gate, and drain terminals, and the portion of the structure retaining the Te-delta doped AlyGa1-ySb layer can be fabricated into an n-FET so that the structure forms a CMOS device, wherein the single InxGa1-xSb quantum well serves as the transport channel for both the n-FET portion and the p-FET portion of the heterostructure.
摘要翻译:在同一器件中单个In x Ga 1-x Sb量子阱用作n沟道和p沟道的互补金属氧化物半导体(CMOS)器件及其制造方法。 In x Ga 1-x Sb层是异质结构的一部分,其在结构的一部分上包括在In x Ga 1-x Sb层上方的Te-δ掺杂的Al y Ga 1-y Sb。 可以通过使用适当的源极,栅极和漏极端子将不具有Te-δ掺杂的AlI y Ga 1-y Sb阻挡层的部分结构制成p-FET,并且保留Te-δ掺杂的Al y Ga 1 -ySb层可以制造成n-FET,使得该结构形成CMOS器件,其中单个In x Ga 1-x Sb量子阱用作异质结构的n-FET部分和p-FET部分的传输沟道。
摘要:
A complementary metal oxide semiconductor (CMOS) device in which a single InxGa1-xSb quantum well serves as both an n-channel and a p-channel in the same device and a method for making the same. The InxGa1-xSb layer is part of a heterostructure that includes a Te-delta doped AlyGa1-ySb layer above the InxGa1-xSb layer on a portion of the structure. The portion of the structure without the Te-delta doped AlyGa1-ySb barrier layer can be fabricated into a p-FET by the use of appropriate source, gate, and drain terminals, and the portion of the structure retaining the Te-delta doped AlyGa1-ySb layer can be fabricated into an n-FET so that the structure forms a CMOS device, wherein the single InxGa1-xSb quantum well serves as the transport channel for both the n-FET portion and the p-FET portion of the heterostructure.
摘要翻译:在同一器件中单个In x Ga 1-x Sb量子阱用作n沟道和p沟道的互补金属氧化物半导体(CMOS)器件及其制造方法。 In x Ga 1-x Sb层是异质结构的一部分,其在结构的一部分上包括在In x Ga 1-x Sb层上方的Te-δ掺杂的Al y Ga 1-y Sb。 可以通过使用适当的源极,栅极和漏极端子将不具有Te-δ掺杂的AlI y Ga 1-y Sb阻挡层的部分结构制成p-FET,并且保留Te-δ掺杂的Al y Ga 1 -ySb层可以制造成n-FET,使得该结构形成CMOS器件,其中单个In x Ga 1-x Sb量子阱用作异质结构的n-FET部分和p-FET部分的传输沟道。
摘要:
A low-defect-density crystalline structure comprising a first crystalline material, a layer of second crystalline material epitaxially grown on the first crystalline material, and a layer of third crystalline material epitaxially grown on the second layer such that the second layer is positioned between the first crystalline material and the third crystalline material. The second and third crystalline materials cooperate to form a desirable relationship. The crystalline structures of the second crystalline material and third crystalline material have a higher crystalline compatibility than the first crystalline material and third crystalline material. The layer of second crystalline material is sufficiently thick to form the desirable relationship with the third crystalline material but sufficiently thin for the layer of second crystalline material to be strained. The layer of third crystalline material is grown to a thickness beyond a thickness had the third layer been grown on an unstrained second layer.
摘要:
A low-defect-density crystalline structure comprising a first crystalline material, a layer of second crystalline material epitaxially grown on the first crystalline material, and a layer of third crystalline material epitaxially grown on the second layer such that the second layer is positioned between the first crystalline material and the third crystalline material. The second and third crystalline materials cooperate to form a desirable relationship. The crystalline structures of the second crystalline material and third crystalline material have a higher crystalline compatibility than the first crystalline material and third crystalline material. The layer of second crystalline material is sufficiently thick to form the desirable relationship with the third crystalline material but sufficiently thin for the layer of second crystalline material to be strained. The layer of third crystalline material is grown to a thickness beyond a thickness had the third layer been grown on an unstrained second layer.
摘要:
A method for chemical vapor deposition of materials containing tellurium, such as cadmium telluride and mercury cadmium telluride, wherein the reactant source of the tellurium is a tellurophene or methyltellurol. These reactant sources have high vapor pressures, and the reactant source vapors emitted from the reactant sources have decomposition temperatures of less than about 300.degree. C., so that deposition may be accomplished at low temperatures of about 250.degree. C. The reactant source vapor containing tellurium is mixed with a reactant source vapor containing another substance to be codeposited, such as dimethylcadmium or dimethylmercury, and contacted with a substrate maintained at the deposition temperature, the deposition being preferably accomplished in an inverted vertical chemical vapor deposition reactor.
摘要:
The method of preparing multi-layer semiconductor heterostructures on the basis of compounds A.sup.III B.sup.V, where A.sup.III is an element of the third group and B.sup.V is an element of the fifth group, consists in crystallization of layers of this heterostructure on a substrate from a liquid zone which is gallium or bismuth pre-saturated with compounds A.sup.III B.sup.V from a source which is a solid solution of compounds A.sup.III B.sup.V feeding the liquid zone with the material of the crystallizing layers.
摘要:
A single crystal InAs-InSb alloy is prepared on a III-V substrate by flash evaporation of a mixture of granulated InAs and InSb in a vacuum system, subsequent condensation and solidification of the vapor on the substrate and subsequent annealing. The flash evaporation and solidification is thus followed by suitable annealing of the deposited material for several weeks at a temperature close to but below the solidus temperature of the alloy. Prior to annealing, an oxide film may be formed on the deposited alloy to prevent loss of the more volatile constituents.
摘要:
Provided is a semiconductor device including graphene. The semiconductor device includes: a substrate including an insulator and a semiconductor; and a graphene layer configured to directly grow only on a surface of the semiconductor, wherein the semiconductor includes at least one of a group IV material and a group III-V compound.