摘要:
A photovoltaic device is presented. The photovoltaic device includes a layer stack; and an absorber layer is disposed on the layer stack. The absorber layer comprises selenium, wherein an atomic concentration of selenium varies across a thickness of the absorber layer. The photovoltaic device is substantially free of a cadmium sulfide layer.
摘要:
A photovoltaic device includes a substrate structure and a p-type semiconductor absorber layer. A photovoltaic device may include a CdSeTe layer. A process for manufacturing a photovoltaic device includes forming a CdSeTe layer over a substrate. The process includes forming a p-type cadmium selenide telluride absorber layer.
摘要:
A photovoltaic device is presented. The photovoltaic device includes a layer stack; and an absorber layer is disposed on the layer stack. The absorber layer includes selenium, and an atomic concentration of selenium varies non-linearly across a thickness of the absorber layer. A method of making a photovoltaic device is also presented.
摘要:
A chalcogen element can be effectively dissolved in a non-explosive hydrazine-based solvent by the aid of sodium in a non-explosive hydrazine-based solvent. Therefore, a precursor solution for forming a metal chalcogenide film containing as a solvent a non-explosive hydrazine-based solvent which is less poisonous than hydrazine and which is free of explosiveness is provided. A metal chacogenide thin film may be formed employing the metal chalcogenide precursor solution.
摘要:
A photovoltaic device is presented. The photovoltaic device includes a layer stack; and an absorber layer is disposed on the layer stack. The absorber layer includes cadmium, tellurium, and selenium. A semiconductor layer is further disposed on the absorber layer, wherein a valence band offset between the semiconductor layer and the absorber layer is less than about 1.3 electron Volts, and a band gap of the semiconductor layer is in a range from about 1.2 electron Volts to about 3.5 electron Volts.
摘要:
A method of fabricating a buffer layer of a photovoltaic device comprises: providing a substrate having a back contact layer disposed above the substrate and an absorber layer disposed above the back contact layer; depositing a metal layer on the absorber layer; and performing a thermal treatment on the deposited metal layer in an atmosphere comprising sulfur, selenium or oxygen, to form a buffer layer.
摘要:
A photovoltaic device is disclosed including at least one Cadmium Sulfide Telluride (CdSxTe1−x) layer as are methods of forming such a photovoltaic device.
摘要:
A photovoltaic device is presented. The photovoltaic device includes a buffer layer disposed on a transparent conductive oxide layer; a window layer disposed on the buffer layer; and an interlayer interposed between the transparent conductive oxide layer and the window layer. The interlayer includes a metal species, wherein the metal species includes gadolinium, beryllium, calcium, barium, strontium, scandium, yttrium, hafnium, cerium, lutetium, lanthanum, or combinations thereof. A method of making a photovoltaic device is also presented
摘要:
A photovoltaic device includes a substrate structure and a p-type semiconductor absorber layer, the substrate structure including a CdSSe layer. A photovoltaic device may alternatively include a CdSeTe layer. A process for manufacturing a photovoltaic device includes forming a CdSSe layer over a substrate by at least one of sputtering, evaporation deposition, CVD, chemical bath deposition process, and vapor transport deposition process. The process includes forming a p-type absorber layer above the CdSSe layer.
摘要:
Disclosed herein is a quantitative analyzing method of a copper indium gallium selenide (CIGS) film, the method including: obtaining spectra by irradiating a laser on the plurality of CIGS films having different component compositions, selecting a first spectral line and a second spectral line among the spectra of target elements to be analyzed and obtaining a correlation plot between a measured intensity of the first spectral line and a measured intensity of the second spectral line, correcting the measured intensity of the first spectral line and the measured intensity of the second spectral line using results obtained by curve fitting the correlation plot, obtaining a linear calibration curve using the corrected intensity of the first spectral line and the corrected intensity of the second spectral line; and comparing the linear calibration curve with LIBS analysis of a target sample to be analyzed.