Abstract:
The present invention provides microcoaxial probes fabricated from semiconductor heterostructures that include strained semiconductor bilayers. The microcoaxial probes are well suited for use as scanning probes in scanning probe microscopy, including scanning tunneling microscopy (STM), atomic force microscopy (AFM), scanning microwave microscopy, or a combination thereof.
Abstract:
Characterizing dielectric surfaces by detecting electron tunneling. An apparatus includes an atomic force probe. A mechanical actuator is connected to the atomic force probe. A mechanical modulator is connected to the mechanical actuator. The mechanical modulator modulates the mechanical actuator and the atomic force probe at the resonant frequency of the atomic force probe. An electrical modulator is connected to the atomic force probe. A feedback sensing circuit is connected to the mechanical modulator to detect movement of the atomic force probe and provide information about the movement of the atomic force probe to the mechanical modulator allowing the mechanical modulator to modulate the atomic force probe at the resonant frequency of the atomic force probe as the resonant frequency of the atomic force probe changes. An FM detector is connected to the feedback circuit detects changes in the resonant frequency of the atomic force probe.
Abstract:
A scanning probe microscopy (SPM) inspection and/or modification system which uses SPM technology and techniques. The system includes various types of microstructured SPM probes for inspection and/or modification of the object. The components of the SPM system include microstructured calibration structures. A probe may be defective because of wear or because of fabrication errors. Various types of reference measurements of the calibration structure are made with the probe or vice versa to calibrate it. The components of the SPM system further include one or more tip machining structures. At these structures, material of the tips of the SPM probes may be machined by abrasively lapping and chemically lapping the material of the tip with the tip machining structures.
Abstract:
A scanning probe microscopy (SPM) inspection and/or modification system which uses SPM technology and techniques. The system includes various types of microstructured SPM probes for inspection and/or modification of the object. The components of the SPM system include microstructured calibration structures. A probe may be defective because of wear or because of fabrication errors. Various types of reference measurements of the calibration structure are made with the probe or vice versa to calibrate it. The components of the SPM system further include one or more tip machining structures. At these structures, material of the tips of the SPM probes may be machined by abrasively lapping and chemically lapping the material of the tip with the tip machining structures.
Abstract:
A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule.
Abstract:
A method for producing micromechanical sensors for the AFM/STM/MFM profilometry is described in which a multiple step mask of cantilever beam and tip is transferred step by step into the wafer substrate by reactive ion etching. A particular highly anisotropic etching step is used for etching and shaping of the tip. This process step uses an Ar/C12 ambient at a pressure of about 100 .sup.6 bar and a self bias voltage of about 300 V DC. The ratio of pressure to self bias voltage determines the concave shape of the tip side-walls. This etching step is followed by a thermal oxidation step. The oxidation is carried out for a time until the oxidation fronts at the thinnest point of the tip shaft touch each other. A stripping process with buffered hydrofluoric acid gently removes the thermally grown oxide. The oxidation process allows--via oxidation time--a modification of tip height and angle in an extremely controllable manner. To prevent sticking of the tip to the structure to be profiled the ratio of tip diameter to tip height should be about 1:10. Should this ratio be exceeded the tip has to be arranged on a pedestal. The structure, comprising a cantilever beam and a tip on pedestal, can be produced with the same but slightly modified process of the invention.
Abstract:
A method is described for producing ultrafine silicon tips for the AFM/STM profilometry comprising:1. providing a silicon substrate and applying a silicon dioxide layer thereto;2. producing a mask in said silicon dioxide layer by photolithography and wet or dry etching;3. producing a tip shaft by transferring the mask pattern, produced in step 2, by reactive ion etching into the silicon substrate;4. thinning the shaft and forming a base by isotropic wet etching; and5. removing the mask by etching.The resulting tip shaft with a rectangular end may be pointed by argon ion milling.In a second embodiment there is an anisotropic wet etching step, prior to step 5, through the intact silicon dioxide mask, producing a negative profile of the shaft immediately below the mask. After this etching step the mask is removed by etching.
Abstract:
In a surface topographic observation method using a scanning tunneling microscope, a probe is moved away from the surface of a sample and is moved on a plane to successively move it to points of measurement on the surface of the sample in order to obtain texture information of the sample. That is, the probe is moved on a plane completely preventing the probe tip from colliding with the surface of the sample and enabling the probe to effect scanning at high speeds.
Abstract:
The present invention relates to a device for measuring and/or modifying a surface of a sample, including a sample holder, including a first area configured to receive the sample fixedly mounted relative to the first area, a support, a first probe configured to detect a first parameter at a point of the surface and to generate a first measurement signal representative of the first parameter, and a second probe configured to detect a second parameter at a point of the surface, and to generate a second measurement signal representative of the second parameter, the first parameter being different from the second parameter, or one of the first probe and the second probe being configured to modify a third parameter of the surface at the point of the surface.
Abstract:
A sensor for scanning a surface with an oscillating cantilever (12), made from piezoelectric material that is suitable for a transverse oscillation of the free end of a beam, holding an electrically conductive probe tip (14) on the free end of the beam in transverse direction, a first deflection electrode (26A, 26B) and an inversely phased second electrode (28A, 28B, 28C) being provided to collect charges that are separated within the space of the deflection electrodes (34, 36). The cantilever (12) is provided with at least one electrode (30) in addition to the deflection electrodes (26A, 26B, 28A, 28B, 28C) that provides electrical contact to the tip (14), the at least one additional electrode being located in a region on the deflecting beam where the surface charge density due to the strain caused by beam deflection (34, 36) is smaller than in the region where the deflection electrodes are located.