Abstract:
A quantum dot microscope apparatus is provided. A further aspect employs a tilted or tapered end or tip on a microscopic probe. Another aspect of the present apparatus employs a probe including a quantum dot with only one tunneling lead connected to a power source. A manufacturing aspect includes creating a tapered or asymmetrically shaped specimen-facing end of a probe where a quantum dot is located on the end. A further manufacturing aspect includes using focused ion-beam milling to create a tip or end of a quantum dot microscope probe.
Abstract:
A quantum dot microscope apparatus is provided. A further aspect employs a tilted or tapered end or tip on a microscopic probe. Another aspect of the present apparatus employs a probe including a quantum dot with only one tunneling lead connected to a power source. A manufacturing aspect includes creating a tapered or asymmetrically shaped specimen-facing end of a probe where a quantum dot is located on the end. A further manufacturing aspect includes using focused ion-beam milling to create a tip or end of a quantum dot microscope probe.
Abstract:
A tunnel current control apparatus includes a terahertz wave generation element configured to generate and output a terahertz wave pulse, a CEP adjustment unit configured to adjust a CEP of the terahertz wave pulse, and an off-axis parabolic mirror serving as a focusing element configured to focus the terahertz wave pulse in a gap between a first conductive object and a second conductive object. The CEP adjustment unit can arbitrarily adjust the CEP of the terahertz wave pulse.
Abstract:
The present disclosure relates to in situ transmission electron microscope (TEM) holders with improved stability and electrical sensitivity. The holders feature a front bearing seal and a rear bearing seal which allow the holders to achieve high sensitivity, high stability, large range of motion and high vacuum isolation. The bearings use a PEEK insulating disk as a pivot point for translation and tilting motion, and use O-rings to dampen vibrations, provide electrical and vacuum insulation, and to set a grabbing force between the bearing and the probe.
Abstract:
In order to meet the needs of the semi-conductor industry as it requires finer lithography nodes, a method of feedback control for scanning probe microscopy generates a microwave frequency comb of harmonics in a tunneling junction by irradiating the junction with mode-locked pulses of electromagnetic radiation. Utilizing power measurements within one or more harmonics, the tip-sample distance in the tunneling junction may be regulated for maximum efficiency and avoid tip crash when used with resistive samples. Optionally, no DC bias is required to use the method. Utilization of this method contributes to true sub-nanometer resolution of images of carrier distribution in resistive samples such as semi-conductors.
Abstract:
Provided is a composite metal-wide-bandgap semiconductor tip for scanning tunneling microscopy and/or scanning, tunneling lithography, a method of forming, and a method for using the composite metal-wide-bandgap semiconductor tip.
Abstract:
A scanning probe microscope of the present disclosure includes: a room-temperature bore superconducting magnet including a liquid helium-consumption free closed-cycle cooling system, a superconducting magnet, and a chamber having a room-temperature bore; and a scanning probe microscope including a scanning head, a vacuum chamber, and a vibration isolation platform; and a computer control system. The room-temperature bore superconducting magnet is cooled by the cryogen-free closed-cycle cooling system which eliminates the dependence on liquid helium for high magnetic field operation. There is no physical contact between the scanning probe microscope and the superconducting magnet connected to the closed-cycle cooling system. The scanning probe microscope can achieve atomic-scale spatial resolution. The temperature of the scanning probe microscope is not restricted by the low temperature conditions for operation of the superconducting magnet. The scanning probe microscope and the vacuum chamber can achieve high-temperature baking independent of the superconducting magnet for ultra-high vacuum conditions.
Abstract:
Methods are described for the economical manufacture of Scanning Probe and Electron Microscope (SPEM) probe tips. In this method, multiple wires are mounted on a stage and ion milled simultaneously while the stage and mounted probes are tilted at a selected angle relative to the ion source and rotated. The resulting probes are also described. The method provides sets of highly uniform probe tips having controllable properties for stable and accurate scanning probe and electron microscope (EM) measurements.
Abstract:
There is provided an iridium tip including a pyramid structure having one {100} crystal plane as one of a plurality of pyramid surfaces in a sharpened apex portion of a single crystal with orientation. The iridium tip is applied to a gas field ion source or an electron source. The gas field ion source and/or the electron source is applied to a focused ion beam apparatus, an electron microscope, an electron beam applied analysis apparatus, an ion-electron multi-beam apparatus, a scanning probe microscope or a mask repair apparatus.
Abstract:
A multimode local probe microscope having a resonator, a first electrode, and a second electrode, an excitation source adapted to generate mechanical resonance in the resonator, a metal tip fastened to the resonator, movement mechanism for imparting relative movement between the local probe and a sample and adapted to bring the end of the tip to within a distance Z lying in the range 0 to 100 nm, and detector for detecting at least one electrical signal representative of friction forces at the terminals of said electrodes. The metal tip is electrically connected to the output second electrode and the microscopy apparatus includes amplifier and filter for amplifying and filtering signals relating to the friction forces and to the tunnelling current in a single electronic circuit, and configured for regulating the distance Z between the end of the tip and the surface of the sample.