Abstract:
A nanoscale circuit has an optical antenna receiving the radiation from a mode-locked laser and it responds by transmitting selected microwave or terahertz frequencies with a separate orthogonal antenna. Only MIM diodes, low-pass filters, and a load resistor are used to generate, separate, and transmit at the harmonics of the laser pulse-repetition rate.
Abstract:
In order to meet the needs of the semi-conductor industry as it requires finer lithography nodes, a method of feedback control for scanning probe microscopy generates a microwave frequency comb of harmonics in a tunneling junction by irradiating the junction with mode-locked pulses of electromagnetic radiation. Utilizing power measurements within one or more harmonics, the tip-sample distance in the tunneling junction may be regulated for maximum efficiency and avoid tip crash when used with resistive samples. Optionally, no DC bias is required to use the method. Utilization of this method contributes to true sub-nanometer resolution of images of carrier distribution in resistive samples such as semi-conductors.
Abstract:
A semiconductor carrier profiling method utilizes a scanning tunneling microscope and shielded probe with an attached spectrum analyzer to measure power loss of a microwave frequency comb generated in a tunneling junction. From this power loss and by utilizing an equivalent circuit or other model, spreading resistance may be determined and carrier density from the spreading resistance. The methodology is non-destructive of the sample and allows scanning across the surface of the sample. By not being destructive, additional analysis methods, like deconvolution, are available for use.
Abstract:
A microwave frequency comb (MFC) is produced when a mode-locked ultrafast laser is focused on the tunneling junction of a scanning tunneling microscope (STM). The MFC consists of hundreds of measureable harmonics at integer multiples of the pulse repetition frequency of the laser, which are superimposed on the DC tunneling current. In Scanning Frequency Comb Microscopy (SFCM) the tip and/or sample electrode of the STM is moved vertically and laterally so that the power in the MFC may be measured at one or more locations on the surface of the sample and, from the power, carrier density, and other characteristics, of the sample may be calculated. SFCM is non-destructive of the sample. While many systems are possible to practice SFCM, a preferred apparatus is disclosed.
Abstract:
An improved device, method, and system efficiently couple high-frequency energy from radiation-assisted field emission. A radiation source radiates an emitting surface with an electromagnetic field. The electromagnetic field reduces the potential barrier at the emitting surface, allowing electrons to tunnel from the surface. The tunneling electrons produce a current. The electron tunneling current oscillates in response to the oscillations of the electromagnetic field radiation. Two or more electromagnetic fields of different frequencies radiate the emitting surface, causing photomixing. The electron tunneling current oscillates in response to the difference of the frequencies of the electromagnetic fields.
Abstract:
A source electrode is biased to lower the potential barrier of surface electrons. A laser radiates the source electrode, producing a tunneling electron current. The tunneling electron current oscillates in response to frequency of the laser. The impedance match circuit couples the current from a high-impedance source electrode of a laser-assisted field emission to a lower-impedance connector, creating a high-frequency microwave signal source. Two or more lasers may be photomixed to further tune the frequency of the microwave signal.
Abstract:
A mode-locked laser injects pulses of minority carriers into a semiconductor sample. A microwave frequency comb is then generated by the currents formed in the movement of majority carriers native to the semiconductor and the injected minority carriers. These carriers move to cause dielectric relaxation in the sample, which can be used to determine carrier density within the sample. Measurements require close proximity of transmitter and receiver contacts with the sample and may profile a semi-conductor with a resolution of approximately 0.2 nm.
Abstract:
Numerous carrier profiling techniques may be combined for simultaneous operation of those techniques on a single material sample. A single apparatus utilizing a Field-Programmable Gate Array (“FPGA”) may be utilized to simultaneously operate those techniques. Various hardware components necessary for the given techniques may be operationally connected to the FPGA while simulations may be performed and stored with the apparatus for real-time analysis of results.
Abstract:
A control methodology for scanning tunneling microscopy is disclosed. Instead of utilizing Integral-based control systems, the methodology utilizes a dual-control algorithm to direct relative advancement of a STM tip towards a sample. A piezo actuator and stepper motor advances an STM tip towards a sample at a given distance until measuring a current greater than or equal to a desired setpoint current. Readings of the contemporaneous step are analyzed to direct the system to change continue or change direction and also determine the size of each step. In simulations where Proportion and/or Integral control methodology was added to the algorithm the stability of the feedback control is decreased. The present methodology accounts for temperature variances in the environment and also appears to clean and protect the tip electrode, prolonging its useful life.