Scanning frequency comb microscopy (SFCM) for carrier profiling in semiconductors
    1.
    发明授权
    Scanning frequency comb microscopy (SFCM) for carrier profiling in semiconductors 有权
    扫描频率梳显微镜(SFCM)用于半导体中的载体分布

    公开(公告)号:US09442078B2

    公开(公告)日:2016-09-13

    申请号:US14635828

    申请日:2015-03-02

    申请人: Mark J. Hagmann

    发明人: Mark J. Hagmann

    IPC分类号: G01N22/00 G01Q60/14 G01Q60/10

    CPC分类号: G01N22/00 G01Q60/14

    摘要: A microwave frequency comb (MFC) is produced when a mode-locked ultrafast laser is focused on the tunneling junction of a scanning tunneling microscope (STM). The MFC consists of hundreds of measureable harmonics at integer multiples of the pulse repetition frequency of the laser, which are superimposed on the DC tunneling current. In Scanning Frequency Comb Microscopy (SFCM) the tip and/or sample electrode of the STM is moved vertically and laterally so that the power in the MFC may be measured at one or more locations on the surface of the sample and, from the power, carrier density, and other characteristics, of the sample may be calculated. SFCM is non-destructive of the sample. While many systems are possible to practice SFCM, a preferred apparatus is disclosed.

    摘要翻译: 当模式锁定超快激光聚焦在扫描隧道显微镜(STM)的隧道结上时,产生微波频率梳(MFC)。 MFC由激光脉冲重复频率的整数倍的数百个可测谐波组成,它们叠加在直流隧道电流上。 在扫描频率梳显微镜(SFCM)中,STM的尖端和/或样品电极垂直和横向移动,使得可以在样品表面上的一个或多个位置处测量MFC中的功率,并且从功率, 可以计算样品的载流子密度和其他特性。 SFCM对样品非破坏性。 虽然许多系统可以实施SFCM,但是公开了一种优选的装置。

    SIMULTANEOUS TOPOGRAPHIC AND ELEMENTAL CHEMICAL AND MAGNETIC CONTRAST IN SCANNING TUNNELING MICROSCOPY
    2.
    发明申请
    SIMULTANEOUS TOPOGRAPHIC AND ELEMENTAL CHEMICAL AND MAGNETIC CONTRAST IN SCANNING TUNNELING MICROSCOPY 有权
    扫描隧道显微镜中的同时位置和元素化学与磁对比

    公开(公告)号:US20140259235A1

    公开(公告)日:2014-09-11

    申请号:US13791157

    申请日:2013-03-08

    IPC分类号: G01Q60/16

    CPC分类号: G01Q60/16 G01Q60/14

    摘要: A method and system for performing simultaneous topographic and elemental chemical and magnetic contrast analysis in a scanning, tunneling microscope. The method and system also includes nanofabricated coaxial multilayer tips with a nanoscale conducting apex and a programmable in-situ nanomanipulator to fabricate these tips and also to rotate tips controllably.

    摘要翻译: 一种用于在扫描隧道显微镜中进行同时地形和元素化学和磁性对比分析的方法和系统。 该方法和系统还包括具有纳米尺度导电顶点的纳米多层同轴多层顶端和可编程原位纳米机械手以制造这些尖端并且还可控制旋转尖端。

    Apparatus for measuring physical properties of micro area
    3.
    发明授权
    Apparatus for measuring physical properties of micro area 失效
    用于测量微区物理性能的装置

    公开(公告)号:US5585722A

    公开(公告)日:1996-12-17

    申请号:US317737

    申请日:1994-10-04

    摘要: An apparatus for measuring physical properties of micro area which has an object to measure physical properties from a micro area on an atomic scale on the surface of a test sample such as electron spin, nuclear magnetic moment, and nuclear quadrupole moment in high sensitivity, allows the probe 2 of the atomic force microscope to approach the surface of the test sample 1, applies a magnetic field to the test sample 1 by the magnetic field generation coil 27 and the magnetic paths 22 to 26 and furthermore a high frequency electromagnetic field to the test sample 1 by the coils 16 and 17 respectively, and detects a signal from atoms existing on the surface of the test sample 1 which are resonant with the high frequency electromagnetic field by the probe 2.

    摘要翻译: 用于测量微区物理性质的装置,其具有以高灵敏度测量诸如电子自旋,核磁矩和核四极矩的测试样品表面上的原子尺度上的微区域的物理特性,允许 原子力显微镜的探针2接近测试样品1的表面,通过磁场产生线圈27和磁路22至26向测试样品1施加磁场,此外还将高频电磁场施加到 分别由线圈16和17测试样品1,并且通过探针2检测来自存在于测试样品1的表面上的原子与高频电磁场共振的信号。

    Method and Means for Coupling High-Frequency Energy to and/or from the Nanoscale Junction of an Electrically-Conductive Tip with a Semiconductor
    4.
    发明申请
    Method and Means for Coupling High-Frequency Energy to and/or from the Nanoscale Junction of an Electrically-Conductive Tip with a Semiconductor 审中-公开
    将高频能量耦合到导电尖端的纳米结和/或从半导体的导电尖端的方法和装置

    公开(公告)号:US20150067931A1

    公开(公告)日:2015-03-05

    申请号:US14223727

    申请日:2014-03-24

    申请人: Mark J. Hagmann

    发明人: Mark J. Hagmann

    IPC分类号: G01Q30/20

    摘要: A method for coupling high-frequency energy, in particular for microwave circuits, to a nanoscale junction involves placing a bias-T outside of the tip and sample circuits of a scanning probe microscope and connecting a portion of a sample of analyzed semi-conductor through an outer shielding layer of coaxial cable so as to complete a circuit with minimal involvement of the sample. The bias-T branches into high and low-frequency circuits, both of which are completed and, at least the high-frequency circuit, does not rely on grounding of implements or other structure to accomplish said completion.

    摘要翻译: 用于将高频能量,特别是用于微波电路的高频能量耦合到纳米级结的方法包括将偏置T置于扫描探针显微镜的尖端和样品回路外部,并将分析的半导体的样品的一部分连接到 同轴电缆的外屏蔽层,以便以最少的样品参与来完成电路。 偏置T分支到高频和低频电路,两者均已完成,并且至少高频电路不依赖于器具或其他结构的接地来完成所述完成。

    Signal coupling system for scanning microwave microscope
    5.
    发明授权
    Signal coupling system for scanning microwave microscope 有权
    用于扫描微波显微镜的信号耦合系统

    公开(公告)号:US07793356B2

    公开(公告)日:2010-09-07

    申请号:US12208432

    申请日:2008-09-11

    CPC分类号: G01Q60/14 G01Q60/48

    摘要: A signal coupling system interposed between a scanning probe and a measurement instrument provides signal communication between the scanning probe and the measurement instrument. The signal coupling system has a pre-stressed shape when the scanning probe is in a neutral position. The pre-stressed shape is designated to provide a characteristic impedance of the signal coupling system that varies linearly as a function of displacement of the scanning probe from the neutral position when the scanning probe is displaced, relative to the neutral position, over a designated range of displacements.

    摘要翻译: 插入在扫描探针和测量仪器之间的信号耦合系统提供扫描探针和测量仪器之间的信号通信。 当扫描探针处于中立位置时,信号耦合系统具有预应力形状。 预应力形状被指定为提供信号耦合系统的特征阻抗,当扫描探针相对于中立位置在指定范围内移动时,其作为扫描探针从中性位置的位移线性变化 的位移。

    Signal Coupling System For Scanning Microwave Microscope
    6.
    发明申请
    Signal Coupling System For Scanning Microwave Microscope 有权
    扫描微波显微镜信号耦合系统

    公开(公告)号:US20100058846A1

    公开(公告)日:2010-03-11

    申请号:US12208432

    申请日:2008-09-11

    IPC分类号: G12B21/00

    CPC分类号: G01Q60/14 G01Q60/48

    摘要: A signal coupling system interposed between a scanning probe and a measurement instrument provides signal communication between the scanning probe and the measurement instrument. The signal coupling system has a pre-stressed shape when the scanning probe is in a neutral position. The pre-stressed shape is designated to provide a characteristic impedance of the signal coupling system that varies linearly as a function of displacement of the scanning probe from the neutral position when the scanning probe is displaced, relative to the neutral position, over a designated range of displacements.

    摘要翻译: 插入在扫描探针和测量仪器之间的信号耦合系统提供扫描探针和测量仪器之间的信号通信。 当扫描探针处于中立位置时,信号耦合系统具有预应力形状。 预应力形状被指定为提供信号耦合系统的特征阻抗,当扫描探针相对于中立位置在指定范围内移动时,其作为扫描探针从中性位置的位移线性变化 的位移。

    Electrical property evaluation apparatus
    7.
    发明申请
    Electrical property evaluation apparatus 有权
    电气性能评估仪器

    公开(公告)号:US20040201378A1

    公开(公告)日:2004-10-14

    申请号:US10809555

    申请日:2004-03-25

    发明人: Yoshiharu Sugano

    IPC分类号: G01N027/72 G01R033/12

    CPC分类号: G01Q60/14

    摘要: An electrical property evaluation apparatus for measuring an electrical property of an object to be measured, including: a magnetic field generating mechanism for generating a magnetic field in a target area on the object; a magnetic sensor for measuring the magnetic field near the target area; a contact having a conducting probe, the contact supported so that the probe can be brought into contact with the target area; a voltage source for applying a voltage to the probe; and an electrical property measuring section for measuring a current or an electrical resistance between the probe and the object in contact with each other.

    摘要翻译: 一种用于测量待测物体的电性能的电性能评估装置,包括:用于在物体上的目标区域中产生磁场的磁场产生机构; 用于测量目标区域附近的磁场的磁传感器; 具有导电探针的触点,所述触头被支撑以使得所述探针能够与所述目标区域接触; 用于向探针施加电压的电压源; 以及用于测量探针和物体之间的电流或电阻彼此接触的电性能测量部分。

    Scanning tunneling potentio-spectroscopic microscope and a data
detecting method
    8.
    发明授权
    Scanning tunneling potentio-spectroscopic microscope and a data detecting method 失效
    扫描隧道电子显微镜和数据检测方法

    公开(公告)号:US5185572A

    公开(公告)日:1993-02-09

    申请号:US585880

    申请日:1990-09-20

    摘要: A bias voltage U.sub.B including a sine-wave voltage U.sub.T sin.omega. .sub.o t and an off-set voltage U.sub.REG is applied to an electrode on a sample. A potential U.sub.1 of the electrode is represented by: U.sub.1 =U.sub.REG +U.sub.T sin.omega. .sub.o t. A voltage including the bias voltage U.sub.B and a voltage .DELTA.U is applied to an electrode on the sample. A probe is approached to the sample by several nm, and a tunnel current I.sub.T flows therebetween. And the probe scans the surface of the sample. During the scan, the position of the probe is servo-controlled in the z-direction, to make constant the average absolute value of the tunnel current. The servo voltage is recorded thereby obtaining an STM image. Given that the potential difference between the electrode and a surface portion facing the probe is U.sub.S (x), the average of U.sub.1 +U.sub.S (x) becomes zero when the average of the tunnel current I.sub.T is zero. Accordingly, =0, that is, U.sub.S (x)=-U.sub.REG. Thus, by recording-U.sub.REG the potential distribution U.sub.S (x) on the sample surface is determined. Spectroscopic data is obtained by an analog operation unit, on the basis of a differential conductance .differential.I.sub.T /.differential.U.sub.T calculated from the tunnel current signal I.sub.T and the bias voltage U.sub.T.

    Computer-Aided Simulation Method For Atomic-Resolution Scanning Seebeck Microscope (SSM) Images
    10.
    发明申请
    Computer-Aided Simulation Method For Atomic-Resolution Scanning Seebeck Microscope (SSM) Images 审中-公开
    用于原子分辨率扫描Seebeck显微镜(SSM)图像的计算机辅助模拟方法

    公开(公告)号:US20150309072A1

    公开(公告)日:2015-10-29

    申请号:US14791732

    申请日:2015-07-06

    IPC分类号: G01Q60/58 G01Q60/14 G01Q30/04

    摘要: A computer-aided simulation method for an atomic-resolution scanning Seebeck microscope (SSM) image is provided. In the computer-aided simulation method, a computer may calculate a local thermoelectric voltage for a position of a voltage probe, to acquire an SSM image corresponding to the position, using the following equation: V  ( r ) = V diff + S coh  ( r )  ∫ ∇ T  ( r ; r ′ ) · r ′ - r  r ′ - r  3   3  r ′ in which V(r) denotes the local thermoelectric voltage, Vdiff denotes a thermoelectric voltage drop in a diffusive transport region in a tip and a sample, Scoh(r) denotes a position-dependent Seebeck coefficient, r denotes a distance measured from a point voltage probe, r′ denotes material internal coordinates, ∇T(r;r′) denotes a temperature gradient radially weighted by a factor of 1/r2, and ∫ ∇ T  ( r ; r ′ ) · r ′ - r  r ′ - r  3   3  r ′ denotes a volume integral of a temperature profile.

    摘要翻译: 提供了原子分辨率扫描塞贝克显微镜(SSM)图像的计算机辅助仿真方法。 在计算机辅助模拟方法中,计算机可以计算电压探针位置的局部热电压,以使用以下等式来获取对应于该位置的SSM图像:V(r)= V diff + S coh 其中V(r)表示局部热电电压,Vdiff表示热电电压(r),r(r),r' Scoh(r)表示与位置相关的塞贝克系数,r表示从点电压探头测得的距离,r'表示材料内部坐标,∇T(r; r' )表示以因子1 / r2径向加权的温度梯度,并且∫∇T(r; r')·r'-rr'-r叁3r'表示a 温度曲线。